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Abstract

The Parras and La Popa basins of northeastern Mexico together contain at least three separate types of structures that were active 
during Maastrichtian through Early Eocene time. These structures include salt diapirs and salt welds, E-W trending anticlines detached 
within the Campanian Parras shale, and large NW-SE trending anticlines detached within the Jurassic salt layers. The oldest halokinetic 
structure, the La Popa salt weld, began to form by Late Aptian time. This structure is parallel to the later NW-SE contractional folds, 
but it pre-dates regional contraction. The earliest dated contractional structures in the Sierra Madre Oriental are E-W trending folds and 
faults found east of the La Popa syncline. These structures were active only briefly during the deposition of the lower Maastrichtian 
Muerto Formation. Very similar east-west structures in the northern Parras Basin contain growth strata of upper Maastrichtian and 
Paleocene age. Folding of upper Paleocene beds indicates that this shortening continued into the Eocene. Very Large amplitude NW-
SE trending anticlines in La Popa Basin also formed due to regional contraction, and they clearly re-fold the shallow-detached E-W 
set. Regional evidence suggests that all contractional deformation ceased around 40 Ma. Salt withdrawal may have continued after 
the cessation of contractional deformation. The contractional deformation in these basins is similar in structural style to the Sevier 
orogen in the U. S. A., but it is later and of shorter duration than the Sevier orogeny; it is time-equivalent to the Laramide orogeny, but 
it differs significantly from the Laramide structural style. Thus, the Mexican orogenic system differs from the U. S. A. orogens. This 
uniqueness was recognized by Guzmán and De Cserna (1963) who named this deformational event in Mexico the Hidalgoan orogeny.

Keywords: Laramide orogeny, Hidalgoan orogeny, Mexico, La Popa Basin, Parras Basin, Sierra Madre Oriental

Resumen

En las Cuencas de Parras y La Popa del noreste del México, contienen al menos tres estilos de estructuras distintas que estuvieron 
activas durante el Maastrichtiano hasta el Ecoeno temprano.. Estas estructuras incluyen diapiros de sal, soldaduras de sal, anticlinales 
orientados E-W, despegados en la lutita Parras del Campaniano, y grandes anticlinales orientados noroeste-sureste despegados en 
capas de sal del Jurásico. La estructura halocinética mas antigua, la soldadura de La Popa, inició su formación en el Aptiano tardío. 
Dicha estructura es paralela a pliegues de contracción NW-SE posteriores, pero precede a la contracción regional. Las estructuras de 
contracción más temprana fechadas en la Sierra Madre Oriental son pliegues y fallas de orientación Este-Oeste ubicados al oriente 
del sinclinal de La Popa. Estas estructuras estuvieron activas sólo brevemente durante la deposición de la Formación El Muerto 
del Maastrichtiano inferior. Estructuras muy similares E-W al norte de la Cuenca de Parras contienen estratos de crecimiento del 
Maastrichtiano superior y del Paleoceno. El plegamiento de las capas del Paleoceno superior indica que el acortamiento continuó en 
el Eoceno. Anticlinales de gran amplitud, orientados NW-SE en la Cuenca de La Popa se formaron también por la contracción regional 
y claramente repliegan las estructuras de desprendimiento someros orientadas E-W. La evidencia regional sugiere que la deformación 
contraccional terminó hace alrededor de 40 Ma. La evacuación de la sal pudo haber continuado después del cese de la deformación 
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1. Introduction

The greater Sierra Madre Oriental and adjacent Coahuila 
foldbelt of NE Mexico comprise one of the most spectacular 
fold provinces on Earth (Figure 1). This mountain belt 
is an extension of the Sevier-Laramide orogenic system 
into Mexico (De Cserna, 1956; Aranda-García, 1991). A 
thick succession of Upper Jurassic through lower Eocene 
strata (Figure 2) is fully involved in the deformation (De 
Cserna, 1971; Eguiluz de Antuñano, 2001; Gray et al., 
2001), indicating a minimum early Cenozoic age for the 
contractional deformation. This timing is coeval with 
the latter part of the Laramide and Sevier events in the 
western United States (Craddock et al., 1988, Kulik and 
Schmidt 1988; Lawton and Trexler, 1991; Lawton et al., 
1993). The style of deformation in the Mexican cordillera 
is predominantly thin-skinned, similar to the Sevier orogen 
in the U. S. A. (e.g., De Cserna, 1956; Armstrong, 1968; 
Padilla y Sánchez, 1985). 

The timing of this orogenic event has been previously 
inferred from unconformities in adjacent basins (Prost et 
al., 1994; Prost and Aranda, 2001; Eguiluz de Antuñano, 
2001) and from interpretations of syn-kinematic and post-
kinematic plutons in the Sabinas Basin (Chávez-Cabello, 
2005). Although the onset of folding has not been previously 
constrained, these analyses place the end of contractional 
deformation in the late Eocene (41-38 Ma). Gray et al. 
(2001) attempted to date cooling related to the onset of this 
orogeny via apatite fission track analysis, but all apatites 
they examined were thermally reset in the mid-Tertiary. 
Gray et al. (2001) did obtain a 62 Ma K/Ar age on fault 
gouge from a Hidalgoan thrust near Xilitla, San Luis Potosí, 
that was interpreted as the last stage of movement on this 
structure.  

Contractional deformation created two distinct fold 
trends in the region (Figure 3; e.g., Soegaard et al., 2003). 
Very large northwest-southeast folds are parallel to the 
overall trend of the orogen and are detached within the 
underlying Middle Jurassic evaporites. Smaller east-west 
folds are detached within the Upper Cretaceous Parras shale. 
These two sets of structures are superimposed in the La Popa 
Basin. The primary purpose of this paper is to document this 
overprinting relationship and to present detailed evidence 
for the timing of the two sets of structures. In particular, we 
review evidence for the onset of contractional deformation 
in the early Maastrichtian.

contraccional. La deformación por contracción en estas cuencas es similar en estilo estructural a la orogenia Sevier en los E. U. A., 
pero es de ocurrencia posterior y de menor duración; es equivalente en tiempo a la orogenia Laramide, pero difiere significativamente 
de su estilo estructural. Por lo tanto, el sistema orogénico mexicano es diferente al de los E. U. A. Esta particularidad fue reconocida 
por Guzmán y De Cserna (1963), quienes nombraron este episodio deformacional la orogenia Hidalgoana en México.

Palabras Clave: Orogenia Laramide, orogenia Hidalgoana, Cuenca de La Popa, Cuenca de Parras, Sierra Madre Oriental.

Figure 1. Extent of Sevier- and Laramide-style deformation in North 
America. The solid line is the approximate trace of the thin-skinned 
deformation front. This is dashed in southern Arizona and New Mexico, 
where it becomes a more complex boundary separating inverted extensional 
basins from the Colorado Plateau (e.g., Lawton, 2008). The completely 
dashed line marks the eastern limit of basement-involved deformation. 
Abbreviations: SLC = Salt Lake City; LV = Las Vegas; TU = Tucson; TO 
= Torreón; M = Monterrey; MC = Mexico City. Modified from Guzmán 
and De Cserna (1963), Campa-Uranga (1985), Drewes (1988), and 
Aranda-Garcia (1991).
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Figure 2. Stratigraphic chart for La Popa Basin. The irregular bodies in the lithostratigraphy column represent the age of carbonate lentils adjacent to the 
salt structures as labeled. The two vertical black bars on the right side of the diagram represent the age span of salt (left bar) and contractional (right bar) 
deformation. The left bar is divided into early salt wall phase and a later main phases. The labels “La Popa folds” and “Los Tulillos folds” are placed at 
the approximate times of activity, respectively. Modified after Lawton et al. (2001).

2. Salt vs. 'Tectonic' structures

The southern end of the Sabinas Basin encompasses 
a region of structures arising from the movement of 
underlying salt layers (Figure 3; Lawton et al., 2001; 
Rowan et al., 2003). Part of this region also has a significant 
accumulation of Cenozoic strata. The area with significant 
Cenozoic deposits is referred to as La Popa Basin (McBride 

et al., 1974; Laudon, 1984; Vega-Vera et al., 1989; Lawton 
et al., 2001).  La Popa Basin is unique in the region in that it 
contains the only well-documented examples of salt diapirs 
and vertical salt welds in northern Mexico (Lawton et al., 
2001). La Popa and the southern Sabinas Basin contain very 
large, northwest-trending folds. These folds have average 
lengths of > 60 km, widths of 8 km, and amplitudes in 
excess of 1 km. The folds are detached within the Jurassic 
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Minas Viejas Formation. They trend parallel to analogous 
detachment folds in Lower Cretaceous carbonate strata that 
occupy the Coahuila folded province (Eguiluz de Antuñano, 
2001; Chávez-Cabello, 2005).

Relatively thick Cenozoic strata are also present in the 
Parras Basin, although no salt structures are present (Figure 
3; McBride et al., 1974; Ye et al., 1997; Soegaard et al., 

2003). These rocks are folded into E-W trending, north-
verging anticlines with larger amplitudes in the south that 
decrease to the north. Well exposed folds along the plunging 
eastern margin of the Coahuila uplift indicate that these 
structures are detached within the Campanian Parras Shale 
(Figure 5; Couch, 2005). In the Parras Basin, where no salt 
is known to exist, all of the structures are tectonic in origin 

Figure 3. Landsat photograph of a portion of northeast Mexico. The La Popa Basin is outlined with a black dashed line, and the Parras Basin is outlined 
with a white dashed line. The northwest-trending folds of the Coahuila foldbelt are marked with black lines. The E-W trending folds of the Parras and La 
Popa basins are marked with yellow lines. The two structural trends have a significant area of overlap in La Popa Basin.  Abbreviations: CFB = Coahuila 
Fold Belt, LPB = La Popa Basin, PB = eastern Parras Basin, CB = Coahuila Block, MS = Monterrey salient. The area of Figure 4 is located between the 
eastern edge of the Coahuila Block and the Parras Basin.
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and have northward vergence (Weidie and Murray, 1967; 
Dillman, 1985). In contrast, the salt diapirs and salt weld 
structures of the La Popa Basin are halokinetic in origin 
(Giles and Lawton, 1999, 2002; Rowan et al., 2003). To 
the north, in the Coahuila folded belt, northwest-trending 
salt-cored anticlines are clearly part of the regional, 
northeast-directed contractional deformation (Eguiluz de 
Antuñano, 2001). The northwest-trending folds in La Popa 
and Sabinas basins are interpreted to be detached on salt, 
and to be cored by salt. Although the role of contractional 
tectonics in forming the large northwest-trending folds in 
La Popa Basin is not clear, the similarity of fold trends in 
the La Popa and Sabinas basins suggests that the La Popa 
folds are largely the result of regional shortening.

3. Evidence for the timing of salt structures

The onset of salt movement in La Popa Basin is 
primarily determined from growth relationships adjacent 
to the salt bodies. The most obvious growth strata are 
localized shoaling carbonate bodies, named lentils by 
McBride et al. (1974). These lentils are generally composed 
of bioclastic limestone near the salt bodies, and become 
more carbonate mud-rich as they thin away from the salt. 
They are interpreted to represent deposition on localized 
bathymetric highs related to the upward movement of salt 

(Giles and Lawton, 2002; Rowan et al., 2003). The oldest 
recognized lentil is Aptian (Lawton et al., 2001) adjacent to 
the La Popa salt weld. The lentils range from Aptian to early 
Eocene, with an apparent increase in number (as currently 
exposed in the basin) in the upper Maastrichtian through 
Paleocene section.

The large northwest-southeast trending folds that 
characterize La Popa Basin, in particular the El Gordo 
anticline, appear to be younger than the onset of diapirism, 
although they too are interpreted to be cored by salt 
(Lawton et al., 2001; Rowan et al., 2003). Weislogel (2001) 
demonstrated that the Maastrichtian Muerto Formation thins 
in proximity to the El Gordo diapir, yet maintains constant 
thickness across the adjacent northwest-trending El Gordo 
anticline, indicating that the diapir predates and the anticline 
post-dates deposition of the Muerto Formation. Hon (2001) 
demonstrated that the Muerto Formation onlaps the margin 
of the La Popa weld, but does not thicken into the adjacent 
northwest-trending La Popa syncline likewise indicating 
post-Muerto Formation onset of shortening (Figure 5). 
Druke (2005) documented growth geometries within the 
La Popa syncline in strata of the upper Maastrichtian 
Potrerillos Formation (Figure 6). Thus, the La Popa salt 
weld, with lentils as old as Aptian, is the oldest documented 
salt structure in the basin. The El Gordo diapir is also 
an early structure (Weislogel, 2001). The oldest salt rise 
associated with the El Papalote diapir can only be dated as 
late Maastrichtian due to lack of exposure of older units. On 
the basis of the data described above, the earliest reliable 
age for the northwest-southeast folding away from the La 
Popa weld is late Maastrichtian. 

Evidence for the end of salt deformation in La Popa 
Basin varies depending upon the particular salt structure 
in question. Local thinning relationships demonstrate that 
the El Papalote diapir continued to rise during deposition 
of the Paleocene upper sandstone member of the Potrerillos 
Formation (Shelley and Lawton, 2005), but ceased to move 
during deposition of the lower Eocene Adjuntas Formation 
(Gray, unpublished data). Lower Eocene Viento beds are 
folded by the El Gordo diapir, so salt movement there 
continued later into the early Eocene, but that is the end of 
the sedimentary record. The youngest unit preserved in the 
basin is the early Eocene Carroza Formation (Vega-Vera et 
al., 1989), which is only present in a mini-basin directly 
southwest of the La Popa weld. There are no preserved early 
Eocene beds on the north side of the weld, but projection of 
the top Paleocene surface onto the weld, from both sides, 
indicates an offset of at least 1 km. This post-early Eocene 
displacement is approximately 30 % of the total slip along 
this weld and suggests that salt movement along the La Popa 
weld continued well into the Tertiary.

4. Evidence for timing of contractional structures

The first indication of orogeny in the Parras-La Popa 

Figure 4. Detail from Landsat image showing the eastern margin of the 
Coahuila Block and adjacent Parras Basin. North is at the top of the 
figure. The gently dipping rocks on the left are Albian-Turonian platform 
carbonates on the Coahuila Block. The wavy rocks on the right are strongly 
folded Maastrichtian-Paleocene Difunta Group clastics. The recessive 
valley in between is occupied by the Campanian Parras Shale. This shale 
forms the detachment level between the planar Coahuila Block strata and 
the folded and faulted Difunta Group rocks.
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basin area is recorded by a marked shift from carbonate to 
clastic deposition at the beginning of Campanian time. Marls 
of the Santonian Indidura Formation and the Campanian 
Parras Shale are both deep marine deposits, but the striking 
change in mineralogy at the beginning of the Campanian 
suggests that uplift and erosion had begun in the west (Gray 
et al., 2001; Gray and Lawton, 2008). Thick Campanian 

shales are prominent features of the Cretaceous Western 
Interior Seaway of the central U. S. A.; however, the 
transition to Campanian shale is more marked in NE Mexico 
due to the abrupt termination of carbonate deposition. The 
initial appearance of carbonate rock fragments in Parras 
Basin strata occurs in the upper Campanian Cañon del 
Tule Formation (Baker, 1970). These recycled carbonate 

Figure 5. Oblique aerial photograph taken looking northwest along the La Popa salt weld (marked in red). The La Popa syncline is prominent north (right) 
of the weld, and the Carroza syncline is prominent south of the weld. The cliff face with prominent outcrops of detached fold-thrust features on the east 
flank of La Popa syncline is noted. Two of these structures are shown in Figure 7. This is also the area with the angular unconformity shown in Figure 8. 
The cross section is a series of measured sections along the west side of the La Popa syncline demonstrating the onlap relationships within the Muerto 
Formation. These data indicate that the La Popa salt wall (now weld) was active during the Muerto Formation deposition, while the adjacent La Popa 
syncline is a younger feature that apparently post-dates the Muerto Formation deposition. Abbreviations: Km = Muerto Formation; Kpl = lower Potrerillos 
Formation; Tpu= Upper Potrerillos Formation; Ta = Adjuntas Formation, Tv = Viento Formation, Tc = Carroza Formation. La Popa Lentil refers to the 
large limestone body comprising the large cliff below the label. Photo courtesy of Bob Goldhammer. Cross section after Hon (2001).
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lithic grains were derived from an uplifted hinterland that 
exposed Lower Cretaceous carbonates to the west (e.g., 
Lawton et al., 2009).

The oldest direct evidence for the onset of tectonic 
shortening is folding and faulting of the Muerto Formation 
in the La Popa Basin, east of La Popa syncline (Figure 7). 
These structures are east-west trending and have an overall 
appearance very similar to the E-W trending structures in 
the Parras Basin. These structures are detached within the 
Campanian Parras Shale, although the detachment depth is 
not the same in all structures (Figure 7; Couch et al., 2004; 
Couch, 2005). Near La Popa syncline, these structures 
deform the lower Muerto Formation, but the uppermost 
Muerto Formation sands onlap the folds (Figure 8). 
These onlapping upper Muerto Formation beds in turn are 
slightly folded. The lower Potrerillos Formation overlaps 
these structures without evidence of E-W folding. These 
contractional structures are therefore early Maastrichtian 
in age. In the northern Parras Basin, Couch (2005) 
documented syntectonic growth on two east-west-trending 
folds, which she named the Los Tulillos fold complex. 
The main period of growth on the Los Tulillos structures 
occurred during deposition of the upper Maastrichtian Las 
Encinas Formation. Couch (2005) also demonstrated that 
fold growth appears to be younger to the south.

The E-W trending folds in the Parras Basin involve the 
entire stratigraphic section above the Parras Shale (Figure 
2). Even the upper Paleocene growth strata in the Los 
Tulillos folds have been folded, indicating that contractional 
deformation in the Parras Basin continued into the Eocene. 

In the eastern La Popa Basin, all of the E-W trending 
contractional structures appear to be early Maastrichtian. 
The E-W structures in western La Popa Basin have not been 
dated, although it appears that they involve only the lower 
Potrerillos Formation and hence could be slightly younger 
than the eastern structures.  These relationships suggest a 
probable latest Cretaceous in age (Figure 3).  

Eguiluz de Antuñano (2001) interpreted the end of 
folding in the Coahuila folded province at 39.5 Ma, based 
upon an angular unconformity in the adjacent Burgos Basin. 
Chavez-Cabello (2005) also placed an upper age limit on 
contractional deformation in the Coahuila folded belt using 
evidence from the late Eocene Monclova-Candela intrusive 
suite. He interpreted the 44 Ma Mercado intrusive as a 
syntectonic pluton based upon a pronounced foliation within 
the body, while the slightly younger 42-39 Ma intrusives 
appear to be entirely post-tectonic. There are no preserved 
overlapping strata of late Eocene age or younger, so these 
textural data are the best extant constraints regarding the 
end of contractional deformation in the region.

5. Relationship between halokinetic and contractional 
structures

The oldest of structures in the Parras, La Popa, and 
southern Sabinas basins are related to the vertical movement 
of salt. These structures began to move by Aptian time, 
and appear to have formed as a result of sediment loading 
alone while the surrounding region was a very large 

Figure 6. Diagram of facies and thickness trends within one of the San Juan carbonate lentils in the upper Maastrichtian carbonate lentil in the Potrerillos 
Formation. This lentil was deposited across the La Popa syncline, and is composed of grainstone on the flanks of this syncline (Facies D) and packestone/
wackestone in the axis of the syncline (Facies E). This unit also thickens from 1-3 m on the flanks to 18 m in the center. Both of these observations 
indicate that the La Popa syncline was active during deposition of this unit, and comprises the earliest documented evidence for the age of inception of 
the La Popa syncline (from Druke, 2005).
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Figure 7. Photos and interpretive drawings of fold-thrust structures along the east face of the La Popa syncline. Both photos were taken looking west. 
North is on the right. (A) Northward-vergent fold-thrust structure cutting through the Parras Shale and lower and middle Muerto Formation sandstones. 
Cliff height is approximately 250 m. (B) Fault interpretation for the fold-thrust structure in this cliff. Fault offset is approximately 20 m. The interpreted 
detachment horizon is approximately 150 m below the base of the Muerto Formation. (C) An adjacent structure to that shown in A and B. This structure 
shows two different thrusts. The early thrust is south-vergent and cuts the Muerto Formation strata at a very low angle to bedding. This low-angle thrust 
detaches near the base of the Muerto Formation beds. It is folded by a younger fold-thrust structure with northward vergence. This second fault is interpreted 
to detach at approximately the same level as the fault shown in B.

Figure 8. Photomosaic of upper Muerto Formation beds just west of the cliff face showing the local geometric relationships. White lines trace strongly 
folded lower and middle Muerto Formation beds and unfolded (in this view) uppermost Muerto Formation beds. Field mapping has shown that even 
these upper Muerto Formation beds are slightly affected by the east-west trending folds. Black arrows on the right note lower Potrerillos Formation beds 
that overlie these structures and are unaffected by the E-W trending folds.
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carbonate platform (Goldhammer, 1999; Lehmann et al., 
1999). The diapiric structures in La Popa Basin do not 
appear to have a preferred orientation.  The large salt weld 
along the northeast side of the basin, however, parallels 
the later contractional structures. The carbonates deposited 
in this platform are regionally quite uniform in thickness, 
indicating that regional tectonic deformation had not begun.  
Salt withdrawal continued into Eocene and possibly into 
Oligocene time (Gray et al., 2001). East-west trending 
contractional structures in eastern La Popa Basin were the 
next structures to form. These structures formed during a 
brief time of shortening in the early Maastrichtian.

Between late Maastrichtian and early Eocene time, 
both E-W and NW-SE trending structures were active, but 
the E-W folds were limited to the Parras Basin area, and 
the northwest-trending folds were active in the La Popa 
and southern Sabinas basins (Figure 2). We speculate that 
folding of the early Maastrichtian décollements in La Popa 
Basin by salt movement, as documented at La Popa syncline 
(Druke, 2005) and La Gavia anticline (Couch et al., 2004; 
Couch, 2005), may have prevented further development 
of detached structures within the Parras Shale, and limited 
subsequent deformation on E-W trending folds to the Parras 
Basin.

6. Comparison of timing between NE Mexico and 
Sevier-Laramide province

As noted earlier, the NW-SE and E-W trending folding 
in northeast Mexico was coeval in part with the late stages 
of both the Sevier and Laramide orogenies in the western U. 
S. A. The Late Cretaceous-Paleogene timing of deformation 
in Mexico is typically referred to as "Laramide" by most 
authors. We take exception to the usage of the term Laramide 
for several reasons. First and foremost is the implication 
that Laramide structures are characterized by the basement-
involved style present at the 'type' Laramide in southern 
Wyoming. Secondly, despite abundant references citing 
the Laramide orogeny as occurring over a very similar time 
period as deformation in northeast Mexico (e.g. Dickinson et 
al., 1988), a growing number of studies demonstrate that this 
distinctive structural style began earlier in the Cretaceous 
within the classic Laramide province than previously 
thought (DeCelles, 1986; Craddock et al., 1988; Barth et 
al., 2004; Jacques-Ayala et al., 2009). "Laramide-time" 
and "Sevier-time" are therefore essentially synonymous 
(Figure 9).

An obvious alternative would be to compare the Sierra 
Madre Oriental and Sabinas structures to the Sevier orogen. 
They are similar in style, especially in the areas where the 
Mexican foldbelts are strongly faulted. The late stages of 
the Sevier orogeny also overlap completely in time with the 
Mexican orogen (Craddock et al., 1988; Lawton and Trexler, 
1991; Lawton et al., 1993) but the Sevier thrusting began 
in the Early Cretaceous, whereas the Sierra Madre Oriental 

and Sabinas structures were demonstrably not active until 
the latest Cretaceous. Although there are many similarities 
with the type Sevier and Laramide systems to the north, we 
think the differences in structural history within Mexico are 
significant enough to warrant retaining the term Hidalgoan 
orogeny as originally proposed by Guzmán and De Cserna 
(1963) by virtue of younger age and contrasting, salt- and 
shale-detached style of deformation in the northeastern 
Mexican cordillera. It is only by recognizing the kinematic 
and temporal differences between these areas that we will 
understand important variations in crustal type, crustal 
structure, stratigraphy, and plate interactions that drove these 
deformational events all along the margin of North America.
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