

Short Note Geochronology of Mexican mineral deposits. III: the Taxco epithermal deposits, Guerrero

José L. Farfán-Panamá^{1,2}, Antoni Camprubí^{3,*}, Eduardo González-Partida⁴, Alexander Iriondo⁴, Enrique Gonzalez-Torres^{3,5}

¹Unidad Académica de Ciencias de la Tierra, Universidad Autónoma de Guerrero, Ex-Hacienda de San Juan Bautista, 40323 Taxco el Viejo, Gro., México.

² Programa de Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, 76230 Ouerétaro, Oro., México.

³ Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, D.F., Mexico.

⁴ Centro de Geociencias, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, 76230 Querétaro, Qro., Mexico.

⁵ Facultad de Ingeniería, Universidad Nacional Autónoma de México. Ciudad Universitaria, 04510, D.F., Mexico.

* camprubitaga@gmail.com

Abstract

New 40 Ar/ 39 Ar (34.96 ± 0.19 Ma) and U-Pb ages (35.44 ± 0.24 and 34.95 ± 0.37 Ma) obtained in this study for the Calavera group of dikes, which predate intermediate sulfidation epithermal mineralization in the Taxco mining district, constrain the formation of such deposits to less than 34.96 Ma (latest Eocene). These deposits might arguably have formed at ~ 33 Ma, thus coinciding in age with the La Azul fluorite deposits, within the same district. Although this age is significantly younger than previously existing estimations, the deposits at Taxco consistently cluster into a Late Eocene to Oligocene metallogenic event. Such event was closely associated with the volcanism in the northern part of the Sierra Madre del Sur, specifically to the most prominent flare-up of subduction-derived volcanism before it ceased in the region and refashioned into the Trans-Mexican Volcanic Belt.

Keywords: Taxco, Mexico, epithermal deposits, intermediate sulfidation, ⁴⁰Ar/³⁹Ar ages, U-Pb ages, zircon.

Resumen

Las nuevas edades ${}^{40}Ar/{}^{99}Ar$ (34.96 ± 0.19 Ma) y U-Pb (35.44 ± 0.24 y 34.95 ± 0.37 Ma) obtenidas en este estudio para el conjunto de diques Calavera, cuyo emplazamiento precedió al de las mineralizaciones epitermales de sulfuración intermedia del distrito minero de Taxco, constriñen la formación de dichos depósitos a menos de 34.96 Ma (Eoceno tardío). Estos depósitos pudieran haberse formado razonablemente a ~ 33 Ma, coincidiendo en edad con los depósitos de fluorita de La Azul, en el mismo distrito. Aunque esta edad es significativamente menor que las estimaciones preexistentes, los depósitos de Taxco pertenecen de forma consistente al episodio metalogenético del Eoceno tardío al Oligoceno. Dicho episodio estuvo ligado cercanamente al emplazamiento del volcanismo de la porción norte de la Sierra Madre del Sur y, específicamente, al evento de mayor envergadura del volcanismo de subducción previo al cese del volcanismo en esta región y a su reconfiguración en la Faja Volcánica Mexicana.

Palabras clave: Taxco, México, depósitos epitermales, sulfuración intermedia, edades ⁴⁰Ar/³⁹Ar, edades U-Pb, circón..

1. Introduction

The Taxco district (Figure 1) is located in the northern part of the state of Guerrero and consists dominantly of polymetallic intermediate sulfidation deposits (Camprubí and Albinson, 2006, 2007) as veins and stockworks, plus replacement mantos of possible skarn genetic affinity. Only a few Au-rich veins in this district can be ascribed to the low sulfidation subtype of epithermal deposits. This district is one of the 'classical' silver mining districts in Mexico that has been extensively mined since the 16th century, although the Aztecs initiated mining in the region during the 15th century. The present mineral reserves in the Taxco district exceed 7 Mt at 91 g/t Ag, 6.83 % Zn and 1.05 % Pb (Servicio Geológico Mexicano, 2004), although its estimated historical production exceeds 30 Mt (Albinson et al., 2001), and includes Ag-Zn-Pb producing mines (namely the San Antonio, Guerrero, Babilonia, Guadalupe, Golondrina, Pedregal and Hueyapa mines). The formation of these deposits is related to the hydrothermal activity

associated with the magmatism of the Sierra Madre del Sur (Camprubí *et al.*, 2006; Camprubí, 2013). For succinct descriptions of the local geology, see Alaniz-Álvarez *et al.* (2002), Servicio Geológico Mexicano (2004), and Camprubí *et al.* (2006).

In this region of the Sierra Madre del Sur, Alaniz-Álvarez *et al.* (2002) and Morán-Zenteno *et al.* (2004, 2005, 2007) described a NW-SE striking tectonomagmatic alignment of volcanic centers —parallel to the present-day Pacific margin— that stretches ~ 200 km between the Cerro Purungueo intrusive and the Huautla volcanic field. This arrangement is associated with regional sinistral strikeslip and transtensive fault systems, and was postulated as a major crustal-scale discontinuity (Alaniz-Álvarez *et al.*, 2002; Morán-Zenteno *et al.*, 2004). The volcanic centers that constitute this alignment are the Cerro Purungueo intrusive (Ferrari *et al.*, 2004), the Nanchititla (Chávez-Álvarez *et al.*, 2012), Sultepec–La Goleta (Díaz-Bravo and Morán-Zenteno, 2011) and Taxco volcanic centers (Alaniz-Álvarez *et al.*, 2002), the Buenavista–Tilzapotla caldera

Figure 1. Location and geological map of the Taxco district, Northern Guerrero state, Mexico, modified from De Cserna and Fries (1980) and Camprubí *et al.* (2006). Valanginian ages (137.1 ± .9 Ma) for the Taxco Viejo Schist were obtained by Campa-Uranga *et al.* (2012). See A-A' cross section in Figure 2. Key: SMO = Sierra Madre Occidental, SMS = Sierra Madre del Sur, TMVB = Trans-Mexican Volcanic Belt.

(Morán-Zenteno et al., 2004), and the Huautla volcanic field (González-Torres et al., 2013). Most of these volcanic centers have associated epithermal (e.g., Sultepec, Taxco, Huitzuco and Huautla) or skarn deposits (Buenavista de Cuéllar; see Camprubí, 2013). Alaniz-Álvarez et al. (2002) and Morán-Zenteno et al. (2004) reported late Eocene ages for the sinistral strike-slip faulting in the Taxco and Buenavista-Tilzapotla volcanic centers. Camprubí et al. (2003) attributed an age of 38 to 36 Ma to the intermediate sulfidation epithermal deposits at Taxco by using data from Alaniz-Álvarez et al. (2002). Pi et al. (2005) dated the La Azul fluorite deposit near the Acamixtla village between 33.0 and 30.0 Ma ([U-Th]/He in fluorite) and advocated for an epithermal model for their formation. This deposit is the only one within the Taxco mining district for which radiometric ages are available. The plausibility of the La Azul fluorite deposit as part of the epithermal type, as opposed to a Mississippi Valley Type model, was further discussed by Pi et al. (2006) and Tritlla and Levresse (2006).

This paper presents the first ⁴⁰Ar/³⁹Ar and U-Pb age determinations for the Calavera group of dikes, which predated the intermediate sulfidation epithermal deposits at the Taxco district (Figure 2; also see Figure 2 in Camprubí *et al.*, 2006), in order to better constrain their age.

2. Methods and results

2.1. ⁴⁰Ar/³⁹Ar analytical procedure

A pure mineral separate of potassium feldspar from a mafic dike of the Calavera group of dikes in the wallrock assemblage within the El Cobre–Babilonia vein tract (Mi Carmen ore shoot) of the Taxco district was dated by 40 Ar/³⁹Ar geochronology (Figure 3 and Table 1). Potassium feldspar crystals that ranged in size from 250 to 180 µm were separated using heavy liquids and hand picking to a purity of > 99 %. The sample was washed in acetone, alcohol, and deionized water in an ultrasonic cleaner to remove dust and then re-sieved by hand using a 180-µm sieve.

Aliquots of the potassium feldspar sample (~ 20 mg)

were packaged in copper capsules and vacuum sealed into quartz tubes. The sample aliquots were then irradiated in package number KD29 for 20 hours in the central thimble facility at the TRIGA reactor (GSTR) at the U.S. Geological Survey in Denver, Colorado. The monitor mineral used in the package was Fish Canyon Tuff sanidine (FCT-3) with an age of 27.79 Ma (Kunk *et al.*, 1985; Cebula *et al.*, 1986) relative to MMhb-1 with an age of 519.4 \pm 2.5 Ma (Alexander *et al.*, 1978; Dalrymple *et al.*, 1981). The type of container and the geometry of the sample and standards were similar to that described by Snee *et al.* (1988).

The potassium feldspar sample (GP-B-48) was analyzed at the U.S. Geological Survey Thermochronology lab in Denver, Colorado, using the ⁴⁰Ar/³⁹Ar step-heating method and a VG Isotopes 1200B mass spectrometer fitted with an electron multiplier. For additional information on the analytical procedure see Kunk *et al.* (2001). The analyzed sample yielded an isochron age at 34.90 \pm 0.2 Ma and an average age at 34.96 \pm 0.19 Ma that is hereby interpreted as the age of crystallization of the Calavera group of dikes. These analyses are displayed in Table 1 and Figure 3.

2.2. U-Pb analytical procedure

Two samples were selected for U-Pb dating in zircon separates from intrusive bodies of the Calavera dike set in the southwestern part of the Taxco district; in both cases, the samples came from dikes that formed just before epithermal mineralization. The U-Pb zircon analyses were performed at the Isotopic Studies Laboratory (LEI) at the *Centro de Geociencias* of the *Universidad Nacional Autónoma de México*. An excimer (193 nm) laser ablation system by Resonetics was attached to a quadruple Thermo-X series ICP-MS spectrometer to carry out the analyses. The system has been described by Solari *et al.* (2010) and all data have been reduced by in-house software "UPb.age" (Solari and Tanner, 2011) and plotted with the computational software "Isoplot 3.0" (Ludwig, 2003).

The analyzed samples yielded ages at 35.44 ± 0.24 (sample C-3) and 34.95 ± 0.37 Ma (sample C-5). These analyses are displayed in Table 2 and Figure 4.

Figure 2. Representative cross section for the spatial relationship between the Calavera dike swarm and the epithermal veins that postdate it. Same legend as in Figure 1.

Figure 3. ⁴⁰Ar/³⁹Ar age spectrum and isochron for the GP-B-48 potassium feldspar sample from the Calavera group of dikes in the Mi Carmen ore shoot of the Taxco mining district.

Table 1. ⁴⁰Ar/³⁹Ar step-heating data for a potassium feldspar separate of the Calavera dikes from Taxco.

Step	Temp.	% ³⁹ Ar	Radiogenic	³⁹ Ar _k	⁴⁰ <u>Ar*</u>	Apparent	Apparent	Apparent	Error
	°C	of total	Yield (%)	(Moles x 10^{-12})	³⁹ Ar _k	K/Ca	K/Cl	Age (Ma)	(Ma)
GP-B-48	Calavera dike,	Taxco <u>K-f</u>	eldspar J =	$0.005202 \pm 0.50\%$	wt = 20.5 mg	#108KD	29		
А	750	6.6	72.2	0.07086	3.843	92	208	35.71 =	± 0.17
В	850	33.8	97.1	0.36375	3.781	231	3906	35.14 =	± 0.02
С	1000	44.7	99.6	0.48088	3.739	309	18528	34.75 =	± 0.03
D	1050	9.0	99.7	0.09723	3.641	190	1987	33.85 =	± 0.08
Е	1100	3.9	98.9	0.04159	3.518	108	1033	32.72 =	± 0.23
F	1150	2.0	95.8	0.02115	3.259	42	695	30.33 =	± 0.53
Total Gas		100.0	96.9	1.07546	3.733	245	9853	34.70	
	85.1% of gas of	on plateau-like	in 750 through	1000 steps		Av	erage Age =	34.96 =	± 0.19

Ages calculated assuming an initial ${}^{40}\text{Ar}/{}^{36}\text{Ar} = 295.5 \pm 0.$

All precision estimates are at the one sigma level of precision.

Ages of individual steps do not include error in the irradiation parameter J.

No error is calculated for the total gas age.

3. Discussion and conclusions

The ⁴⁰Ar/³⁹Ar (34.96 ± 0.19 Ma) and U-Pb ages (35.44 ± 0.24 and 34.95 ± 0.37 Ma) obtained in this study for the Calavera set of dikes that predate epithermal mineralization in the Taxco mining district, given the different closure temperatures of the dated minerals (potassium feldspar and zircon) with respect to each dating method (*e.g.*, Figure 1 in Chiaradia *et al.*, 2013), are congruent with the rapid cooling expected for a dike swarm. Also, these ages are similar to that obtained for the Acamixtla ignimbrite (35.77 ± 0.42 Ma), which belongs to the Taxco volcanic field (González-Torres *et al.*, 2013), and are younger than those obtained by Alaniz-Álvarez *et al.* (2002) for similar rocks. Therefore, epithermal deposits must be younger than 34.90 Ma. Still, the ages in this study would cluster into a

Late Eocene metallogenic event in the Sierra Madre del Sur, along with the Placeres del Oro, Pinzán Morado, Las Fraguas and Huautla epithermal deposits, and the Piedra Imán and Buenavista de Cuéllar IOCG 'clan' deposits (Table 3; see also Table 1 and Figure 7 in Camprubí, 2013), all of them located in the northern Guerrero state or its vicinities. Such ages also occur between two of the volcanic episodes in the Sierra Madre del Sur (between ~ 36.5 and ~ 34.5 Ma; González-Torres et al., 2013) that constitute the last relevant flare-up episode before the extinction of its subductionderived volcanism and the rearrangement of such activity into the Trans-Mexican Volcanic Belt during the Miocene. In spite of being relatively restricted in space, especially when compared to the Oligocene flare-up of the Sierra Madre Occidental and the massive formation of associated ore deposits (see Camprubí, 2013, and references therein), this volcanic episode in the Sierra Madre del Sur makes of this region a highly prospective one for epithermal and skarn

							Table 2.	U-Pb det	erminatic	ns in zi	rcon from 1	the Calave	era dike	s from Ta	XCO.								
							COR	RECTED	ATIOS								CORR	ECTED A	GES (Ma	a)			
1	U (ppm)	Th (ppm)	Th/U	$^{207} Pb/^{206} Pb$	±lσ	$^{207} Pb/^{235} U$	±lσ	$^{206} Pb/^{238} U$	$\pm 1\sigma$	Rho	$^{208}\mathrm{Pb}/^{232}\mathrm{Th}$	±lσ	% disc	²⁰⁶ Pb/ ²³⁸ U	$\pm 1\sigma^{20'}$	⁷ Pb/ ²³⁵ U =	±lσ ²⁰⁷ Ι	b/ ²⁰⁶ Pb :	±lσ ²⁰⁸ P	b/ ²³² Th ≟	=lσ Best	age (Ma)	±lσ
C-3 (mafic d	ike, Taxco) January	2011 (Mo	unt ICGEO-21	~																		
Zircon_29	4369	886	0.18	0.04657	0.00076	0.02973	0.00054	0.00463	0.00003	0.320	0.00148	0.00004	0	29.8	0.2	29.7	0.5	27	34	29.8	0.9	29.8	0.2
Zircon_36	2476	408	0.15	0.04736	0.00094	0.03113	0.00068	0.00477	0.00003	0.330	0.00152	0.00002	1	30.7	0.2	31.1	0.7	67	46	30.6	0.5	30.7	0.2
Zircon_34	3930	928	0.21	0.04746	0.00081	0.03314	0.00061	0.00507	0.00003	0.380	0.00165	0.00003	7	32.6	0.2	33.1	0.6	72	40	33.3	0.6	32.6	0.2
Zircon_3	2549	606	0.32	0.05702	0.00281	0.04090	0.00219	0.00520	0.00006	0.300	0.00162	0.00002	18	33.5	0.4	41.0	2.0	492	104	32.6	0.4	33.5	0.4
Zircon_33	903	257	0.26	0.04779	0.00143	0.03499	0.00109	0.00532	0.00004	0.280	0.00167	0.00005	7	34.2	0.3	35.0	1.0	89	67	34.0	1.0	34.2	0.3
Zircon_17	234	60	0.23	0.05275	0.00393	0.03941	0.00319	0.00542	0.00010	0.330	0.00170	0.00005	11	34.8	0.7	39.0	3.0	318	167	34.3	1.0	34.8	0.7
Zircon_19	439	183	0.38	0.05000	0.00249	0.03731	0.00201	0.00541	0.00006	0.260	0.00171	0.00003	9	34.8	0.4	37.0	2.0	195	108	34.5	0.7	34.8	0.4
Zircon_9	588	154	0.24	0.05384	0.00359	0.04029	0.00279	0.00543	0.00005	0.210	0.00170	0.00003	13	34.9	0.3	40.0	3.0	364	152	34.3	0.6	34.9	0.3
Zircon_27	862	247	0.26	0.05145	0.00257	0.03864	0.00204	0.00545	0.00005	0.250	0.00171	0.00003	8	35.0	0.3	38.0	2.0	261	108	34.6	0.5	35.0	0.3
Zircon_30	869	261	0.34	0.04982	0.00247	0.03764	0.00199	0.00548	0.00005	0.250	0.00173	0.00004	٢	35.2	0.3	38.0	2.0	186	107	34.9	0.8	35.2	0.3
Zircon_7	188	68	0.32	0.05609	0.00570	0.04232	0.00459	0.00547	0.00010	0.270	0.00170	0.00006	16	35.2	0.6	42.0	4.0	456	225	34.0	1.0	35.2	0.6
Zircon_18	449	145	0.29	0.04853	0.00176	0.03672	0.00143	0.00549	0.00005	0.220	0.00174	0.00004	5	35.3	0.3	37.0	1.0	125	. 62	35.1	0.7	35.3	0.3
Zircon_11	847	204	0.22	0.04707	0.00150	0.03586	0.00123	0.00553	0.00005	0.290	0.00176	0.00007	-	35.5	0.3	36.0	1.0	53	67	35.0	1.0	35.5	0.3
Zircon_14	342	119	0.31	0.05366	0.00422	0.04088	0.00344	0.00553	0.00008	0.300	0.00173	0.00004	13	35.5	0.5	41.0	3.0	357	176	34.9	0.8	35.5	0.5
Zircon_40	757	241	0.29	0.05371	0.00166	0.04080	0.00136	0.00552	0.00007	0.370	0.00190	0.00011	13	35.5	0.4	41.0	1.0	359	70	38.0	2.0	35.5	0.4
Zircon_16	615	167	0.24	0.05314	0.00202	0.04031	0.00158	0.00555	0.00005	0.240	-0.00019	-0.00006	Ξ	35.7	0.3	40.0	2.0	335	. 86	-3.8	1.2	35.7	0.3
Zircon_23	769	332	0.39	0.05118	0.00255	0.03933	0.00207	0.00557	0.00005	0.210	0.00175	0.00002	8	35.8	0.3	39.0	2.0	249	108	35.4	0.5	35.8	0.3
Zircon_22	323	140	0.39	0.04608	0.00424	0.03570	0.00346	0.00562	0.00007	0.260	0.00188	0.00026	0	36.1	0.5	36.0	3.0	2	179	38.0	5.0	36.1	0.5
Zircon_12	327	82	0.23	0.04974	0.00261	0.03864	0.00216	0.00563	0.00007	0.240	0.00178	0.00005	5	36.2	0.5	38.0	2.0	183	117	35.9	1.0	36.2	0.5
Zircon_8	379	131	0.31	0.05974	0.00612	0.04642	0.00501	0.00564	0.00008	0.250	0.00174	0.00005	21	36.2	0.5	46.0	5.0	594	229	35.2	1.0	36.2	0.5
Zircon_26	1769	512	0.26	0.05625	0.00454	0.04392	0.00378	0.00566	0.00007	0.340	0.00176	0.00005	17	36.4	0.5	44.0	4.0	462	171	36.0	1.0	36.4	0.5
Zircon_25	563	209	0.33	0.05614	0.00404	0.04406	0.00330	0.00569	0.00005	0.200	0.00177	0.00003	17	36.6	0.3	44.0	3.0	458	153	35.8	0.6	36.6	0.3
Zircon_5	906	223	0.22	0.04991	0.00180	0.03922	0.00145	0.00571	0.00005	0.220	0.00179	0.00005	9	36.7	0.3	39.0	1.0	191	83	36.0	1.0	36.7	0.3
Zircon_2	551	197	0.32	0.05978	0.00718	0.04767	0.00584	0.00578	0.00007	0.120	0.00179	0.00007	21	37.2	0.5	47.0	6.0	596	255	36.0	1.0	37.2	0.5
Zircon_10	416	86	0.19	0.04884	0.00213	0.03963	0.00187	0.00589	0.00007	0.310	0.00186	0.00005	3	37.8	0.5	39.0	2.0	140	96	38.0	1.0	37.8	0.5
Zircon_20	190	63	0.30	0.04923	0.00300	0.04005	0.00258	0.00590	0.00008	0.220	0.00187	0.00009	5	37.9	0.5	40.0	3.0	159	129	38.0	2.0	37.9	0.5
Zircon_4	484	150	0.28	0.04662	0.00248	0.03973	0.00244	0.00618	0.00011	0.370	0.00197	0.00013	1	39.7	0.7	40.0	2.0	30	112 4	40.0	3.0	39.7	0.7
Zircon_37	663	316	0.43	0.05215	0.00130	0.14506	0.00379	0.02022	0.00015	0.300	0.00639	0.00015	7	129.0	0.9	138.0	3.0	292	57 1	129.0	3.0	129.0	0.9
																		Wei	ghted Me	$an \frac{206}{Pb}/2$ (n =	³⁸ U age = 16; MSWI	35.44 ± 0.2 [,]) = 1.5; 2-si	4 Ma igma)

C-5 (mafic di	ike, Taxco)	January 2	:011 (Mour	it ICGE0-21	0		,															
Zircon_6	6771	3203	0.42	0.06293	0.00271	0.03906	0.00174	0.00448	0.00005	0.260	0.00165	0.00007	26	28.8	0.3	39.0	2.0	706 8	6 33.	0 1.0	28.8	0.3
Zircon_40	1690	426	0.23	0.04719	0.00113	0.03072	0.00078	0.00473	0.00004	0.330	0.00158	0.00004	1	30.4	0.3	30.7	0.8	59 5	2 31.0	9 0.8	30.4	0.3
Zircon_19	6147	1438	0.21	0.04713	0.00075	0.03163	0.00054	0.00487	0.00003	0.360	0.00162	0.00003	-	31.3	0.2	31.6	0.5	56 3	3 32.	7 0.6	31.3	0.2
Zircon_22	5743	1183	0.18	0.04727	0.00076	0.03201	0.00056	0.00492	0.00003	0.400	0.00166	0.00003	1	31.6	0.2	32.0	0.6	63 3	4 33.	5 0.6	31.6	0.2
Zircon_30	6786	1820	0.24	0.04831	0.00077	0.03289	0.00058	0.00494	0.00004	0.430	0.00163	0.00003	3	31.8	0.3	32.9	0.6	114 3	5 32.	9 0.6	31.8	0.3
Zircon_10	2029	383	0.17	0.04735	0.00096	0.03244	0.00074	0.00497	0.00004	0.310	0.00158	0.00005	_	32.0	0.2	32.4	0.7	67 4	12 32.1	0 1.0	32.0	0.2
Zircon_21	2920	881	0.27	0.04667	0.00086	0.03197	0.00069	0.00497	0.00004	0.330	0.00159	0.00005	0	32.0	0.2	32.0	0.7	32 3	6 32.0	0 1.0	32.0	0.2
Zircon_2	2578	782	0.27	0.04667	0.00072	0.03212	0.00056	0.00499	0.00003	0.270	0.00162	0.00006	0	32.1	0.2	32.1	0.6	32 3	2 33.0	0 1.0	32.1	0.2
Zircon_24	4086	1026	0.22	0.04844	0.00078	0.03342	0.00058	0.00501	0.00003	0.370	0.00176	0.00004	4	32.2	0.2	33.4	0.6	121 3	4 35.	5 0.8	32.2	0.2
Zircon_25	2240	666	0.27	0.04679	0.00104	0.03257	0.00082	0.00505	0.00004	0.340	0.00161	0.00006	0	32.5	0.2	32.5	0.8	39 4	17 32.1	0 1.0	32.5	0.2
Zircon_28	5604	1689	0.27	0.04867	0.00083	0.03394	0.00061	0.00506	0.00003	0.320	0.00164	0.00004	4	32.5	0.2	33.9	0.6	132 3	8 33.	1 0.8	32.5	0.2
Zircon_8	4107	837	0.18	0.04754	0.00093	0.03310	0.00071	0.00505	0.00003	0.360	0.00160	0.00003	2	32.5	0.2	33.1	0.7	77 4	13 32. [,]	4 0.6	32.5	0.2
Zircon_39	1658	532	0.29	0.04899	0.00194	0.03460	0.00148	0.00512	0.00004	0.280	0.00162	0.00003	9	32.9	0.3	35.0	1.0	147 8	5 32.	8 0.6	32.9	0.3
Zircon_13	2608	536	0.18	0.04790	0.00120	0.03389	0.00091	0.00515	0.00005	0.360	0.00174	0.00005	2	33.1	0.3	33.8	0.9	94 5	2 35.1	0 1.0	33.1	0.3
Zircon_20	2336	539	0.21	0.05333	0.00462	0.03794	0.00349	0.00516	0.00005	0.270	0.00163	0.00007	13	33.2	0.3	38.0	3.0	343 1'	74 33.0	0 1.0	33.2	0.3
Zircon_27	1504	299	0.18	0.04984	0.00125	0.03543	0.00095	0.00516	0.00005	0.350	0.00164	0.00004	9	33.2	0.3	35.4	0.9	188 5	5 33.	1 0.8	33.2	0.3
Zircon_17	1972	493	0.22	0.04839	0.00135	0.03507	0.00104	0.00523	0.00005	0.340	0.00179	0.00005	4	33.6	0.3	35.0	1.0	118 5	8 36.	0 1.0	33.6	0.3
Zircon_23	1811	463	0.23	0.05242	0.00105	0.03770	0.00082	0.00522	0.00004	0.390	0.00173	0.00005	11	33.6	0.3	37.6	0.8	304 4	0 35.0	0 1.0	33.6	0.3
Zircon_16	4848	1812	0.33	0.04847	0.00121	0.03506	0.00119	0.00525	0.00007	0.660	0.00166	0.00002	4	33.7	0.4	35.0	1.0	122 5	2 33.	6 0.4	33.7	0.4
Zircon_9	1508	413	0.25	0.04960	0.00163	0.03588	0.00133	0.00525	0.00005	0.370	0.00166	0.00002	9	33.7	0.3	36.0	1.0	176 7	2 33.	5 0.4	33.7	0.3
Zircon_35	1510	237	0.14	0.04767	0.00143	0.03502	0.00119	0.00533	0.00007	0.390	0.00169	0.00009	2	34.2	0.5	35.0	1.0	83 6	5 34.0	0 2.0	34.2	0.5
Zircon_14	1283	173	0.12	0.04854	0.00121	0.03569	0.00106	0.00533	0.00006	0.450	0.00169	0.00003	5	34.3	0.4	36.0	1.0	126 5	2 34.	1 0.7	34.3	0.4
Zircon_18	2169	558	0.23	0.04893	0.00122	0.03605	0.00095	0.00535	0.00004	0.330	0.00182	0.00004	4	34.4	0.3	36.0	0.9	144 5	2 36.	8 0.8	34.4	0.3
Zircon_26	669	378	0.48	0.05319	0.00391	0.03968	0.00311	0.00541	0.00005	0.230	0.00170	0.00002	13	34.8	0.3	40.0	3.0	337 1:	54 34.	4 0.5	34.8	0.3
Zircon_29	5983	2110	0.32	0.04815	0.00072	0.03596	0.00062	0.00542	0.00005	0.500	0.00195	0.00004	3	34.8	0.3	35.9	0.6	107 3	3 39.	4 0.8	34.8	0.3
Zircon_15	1769	484	0.25	0.04801	0.00106	0.03581	0.00083	0.00543	0.00004	0.300	0.00179	0.00004	2	34.9	0.3	35.7	0.8	100 4	6 36.	1 0.8	34.9	0.3
Zircon_5	829	200	0.22	0.04799	0.00182	0.03627	0.00143	0.00548	0.00005	0.280	0.00180	0.00012	2	35.2	0.3	36.0	1.0	8 66	11 36.0	0 2.0	35.2	0.3
Zircon_1	539	154	0.26	0.04672	0.00562	0.03558	0.00463	0.00552	0.00006	0.250	0.00191	0.00041	1	35.5	0.4	36.0	5.0	35 22	21 39.0	0 8.0	35.5	0.4
Zircon_11	1193	306	0.23	0.04886	0.00168	0.03736	0.00152	0.00555	0.00007	0.460	0.00176	0.00004	4	35.6	0.4	37.0	1.0	141 7	1 35.	5 0.8	35.6	0.4
Zircon_34	405	151	0.33	0.05108	0.00255	0.03932	0.00200	0.00560	0.00006	0.190	0.00178	0.00006	8	36.0	0.4	39.0	2.0	244 10	07 36.	0 1.0	36.0	0.4
Zircon_31	430	129	0.27	0.04861	0.00291	0.03920	0.00246	0.00585	0.00007	0.210	0.00185	0.00011	4	37.6	0.4	39.0	2.0	129 13	26 37.0	0 2.0	37.6	0.4
Zircon_4	1920	686	0.32	0.05080	0.00240	0.04208	0.00214	0.00601	0.00006	0.260	0.00190	0.00003	8	38.6	0.4	42.0	2.0	232 1(01 38.	3 0.5	38.6	0.4
Zircon_12	1159	278	0.21	0.05403	0.00308	0.04633	0.00307	0.00622	0.00012	0.450	0.00195	0.00004	13	40.0	0.8	46.0	3.0	372 1	14 39.4	4 0.7	40.0	0.8
Zircon_3	1237	391	0.28	0.06565	0.00236	0.08426	0.00383	0.00931	0.00016	0.590	0.00286	0.00005	27	60.0	1.0	82.0	4.0	795 7	1 57.	8 1.0	60.0	1.0
																		Weig	hted Mean	$206 Pb/^{238}U_{1}$ (n = 9; h	age = 32.27 ± 4 ASWD = 1.9	.0.23 Ma 2-sigma)
																		Weig	hted Mean	206 Pb/238 U	195 = 34.95	0.37 Ma
)		(n = 10; N	4SWD = 2.3	2-sigma)

Table 2. (Continued) U-Pb determinations in zircon from the Calavera dikes from Taxco.

362

Figure 4. Tera-Wasserburg U-Pb concordia plots (a, b, d and e) and plots of weighted averages of individual ²⁰⁶Pb/²³⁸U ages (c and f) of analyzed zircons from two samples of the pre-epithermal mineralization Calavera group of dikes from the Taxco district. Solid-line ellipses, with black square centers, are data used for age calculations; gray-line ellipses are data excluded from age calculations due to different degrees of Pb-loss and/or zircon inheritance. All U-Pb data are plotted with 2-sigma errors and all calculated weighted mean ages are also listed at the 2-sigma level. Original U(Th)-Pb data can be found for inspection in Table 2.

Sample	Locality	Type of deposit	Coordinates	Method	Mineral	Age (Ma)	Sources
Real de Guadalu	pe	Polymetallic intern epithermal deposit	nediate sulfidation	K-Ar	w.r.	40.0 to 37.0	Albinson and Parrilla (1988)
Placeres del Oro Piedra Imán	, Pinzán Morado &	Ag-Au low sulfida deposits and iron o IOCG 'clan' (Pieda	tion epithermal xide veins of the ra Imán)	K-Ar	w.r.	<36.6	Pantoja-Alor (1986)
C-3		Ag-Zn-Pb	18°32'20" N	U-Pb	Zircon	35.44 ± 0.24	
C-5	Taxco	intermediate	99°33'45" W	U-Pb	Zircon	34.95 ± 0.37	This study
GP-B-48		epithermal deposit		⁴⁰ Ar/ ³⁹ Ar	K-feldspar	34.96 ± 0.19 (average)	
Buenavista de Cu	uéllar	Iron oxide skarn of the IOCG 'clan'		⁴⁰ Ar/ ³⁹ Ar	K-feldspar	35.5 to 34.7	Meza-Figueroa et al. (2003)
Huautla		Polymetallic intern epithermal deposit	nediate sulfidation	U-Pb	Zircon	34.8 to 31.4	González-Torres et al. (2013)
La Azul (Taxco district)		Fluorite deposit, ur (epithermal or MV	ncertain type T)	(U-Th)/He	Fluorite	33.0 to 30.0	Pi et al. (2005)

Table 3. Age determinations for the Calavera group of dikes that predate the Taxco epithermal deposits, in comparison with ages of ore deposits in the northern part of the Sierra Madre del Sur, Mexico

deposits (either sulfide or iron oxide skarns of the IOCG 'clan') during the Late Eocene.

The volcanic centers of the previously described magmatic lineament have been interpreted as the eruptive manifestation of a progressive thermomechanical maturation of the crust, driven by sustained igneous activity that affected the region since the early Eocene. According to this idea, widespread Eocene magmatism and injection of mantle-derived melts into the crust promoted the development of a hot zone extending to upper crustal levels, and the formation of a mature intracrustal magmatic system; within this context, intermediate-siliceous compositions were produced by low-pressure fractional crystallization, crustal contamination, and anatexis (Mori *et al.*, 2012; González-Torres, 2013).

We may also examine the plausibility of the two proposed genetic affinities for the La Azul fluorite deposits in the Taxco district, as Pi et al. (2005, 2006) advocate for an epithermal model, whereas Tritlla and Levresse (2006) favor a Mississippi Valley Type (MVT) model instead. Firstly, fluorite is a common mineral in intermediate sulfidation epithermal deposits (Lyons, 1988; Ponce and Clark, 1988; Albinson and Rubio, 2001; Albinson et al., 2001; Camprubí et al., 2001; Camprubí and Albinson, 2006, 2007), including those in the Taxco district (Camprubí et al., 2006). Such characteristic in deposits of different ages and localities implies that F- would have been a major ion in oreforming solutions associated with intermediate sulfidation epithermal environments. Secondly, the ages in this paper for the Calavera group of dikes indicate that epithermal mineralization would be younger than ~ 34.96 Ma. The common knowledge indicates that the time span between the youngest volcanic or hypabyssal rocks that predate genetically linked epithermal mineralization -regardless of their state of sulfidation, or the size of the deposits- and epithermal mineralization itself is ~ 2 m.yr. in Mexican deposits (as determined in the Fresnillo, Guanajuato, Pachuca-Real del Monte, Tayoltita, and Temascaltepec districts; see Lang et al., 1988; McKee et al., 1992; Enríquez and Rivera, 2001; Camprubí et al., 2003; Camprubí and Albinson, 2007; Velador et al., 2010; Martínez-Reyes et al., 2015, and references therein), whereas such gaps are significantly shorter for high sulfidation deposits (La Caridad Antigua; Valencia et al., 2005, 2008). Assuming that this were the case, it would be reasonable to expect that the earliest epithermal deposits of Taxco formed at \sim 33 Ma, which coincides with the range of ages between 33.0 and 30.0 Ma determined by Pi et al. (2005) for the La Azul fluorite deposit. Notably, the Huautla Formation of the neighboring Huautla mining district, a heterogeneous volcanic succession that hosts hydrothermal alteration zones and epithermal veins, has a similar U-Pb age at 32.9 ± 0.6 Ma (González-Torres et al., 2013). That would then imply (1) that the 'classical' polymetallic intermediate sulfidation deposits at Taxco and the small fluorite deposits nearby formed at the same time, and (2) that their formation by

means of very different fluids and mineralizing processes (as of magmatic-hydrothermal and epithermal model vs. basinal brines and MVT model; see Table 3) would have been highly implausible. Therefore, from this point of view, it is likely to ascribe the La Azul fluorite deposit to the epithermal type, as postulated by Pi *et al.* (2005, 2006).

Acknowledgements

This study was financed by means of the CONACYT grants 58825Y and 155662, and the PAPIIT-UNAM grant number IN101510. The authors wish to thank Michael Kunk for providing access and guidance to perform the 40Ar/39Ar geochronology studies at the U.S. Geological Survey Thermochronology Lab in Denver, Colorado, and to Carlos Ortega for his help during U/Pb analysis at the Centro de Geociencias (UNAM). Formal reviews were conducted by José María González-Jiménez and an anonymous referee, whose comments helped to improve this paper.

References

- Alaniz-Álvarez, S.A., Nieto-Samaniego, Á.F., Morán-Zenteno, D.J., Alba-Aldave, L., 2002, Rhyolitic volcanism in extension zone associated with strike-slip tectonics in the Taxco region, southern Mexico: Journal of Volcanology and Geothermal Research, 118, 1-14.
- Albinson, T., Parrilla, L.V., 1988, Geologic, mineralogic, and fluid inclusion characteristics of polymetallic veins, Real de Guadalupe mining district, Guerrero, Mexico: Economic Geology, 83, 1975-1984.
- Albinson, T., Rubio, M.A., 2001, Mineralogic and thermal structure of the Zuloaga vein, San Martín de Bolaños district, Jalisco, Mexico, *in* Albinson, T., Nelson, C.E. (eds.), New mines and discoveries in Mexico and Central America: Society of Economic Geologists Special Publication Series, 8, 115-132.
- Albinson, T., Norman, D.I., Cole, D., Chomiak, B.A., 2001, Controls on formation of low-sulfidation epithermal deposits in Mexico: constraints from fluid inclusion and stable isotope data, *in* Albinson, T., Nelson, C.E. (eds.), New mines and discoveries in Mexico and Central America: Society of Economic Geologists Special Publication Series, 8, 1-32.
- Alexander, E.C. Jr., Mickelson, G.M., Lanphere, M.A., 1978, Mmhb-1: a new ⁴⁰Ar/³⁹Ar dating standard, *in* Zartman, R.E. (ed.), Short papers of the fourth international conference, geochronology, cosmochronology, and isotope geology: U.S. Geological Survey Open-File Report, 78-701, 6-8.
- Campa-Uranga, M.F., Torres de León, R., Iriondo, A., Premo, W.R., 2012, Caracterización geológica de los ensambles metamórficos de Taxco y Taxco el Viejo, Guerrero, México: Boletín de la Sociedad Geológica Mexicana, 64, 369-385.
- Camprubí, A., 2013, Tectonic and metallogenic history of Mexico, *in* Colpron, M., Bissig, T., Rusk, B.G., Thompson, J.F.H., (eds.), Tectonics, metallogeny, and discovery: the North American Cordillera and similar accretionary settings: Society of Economic Geologists, Special Publication, 17, 201-243.
- Camprubí, A., Albinson, T., 2006, Depósitos epitermales en México: actualización de su conocimiento y reclasificación empírica: Boletín de la Sociedad Geológica Mexicana, 58, 27-81.
- Camprubí, A., Albinson, T., 2007, Epithermal deposits in México an update of current knowledge, and an empirical reclassification, *in* Alaniz-Álvarez, S.A., Nieto-Samaniego, A.F. (eds.), Geology of México: Celebrating the Centenary of the Geological Society of México: The Geological Society of America Special Paper, 422, 377-415.

- Camprubí, A., Canals, À., Cardellach, E., Prol-Ledesma, R.M., Rivera, R., 2001, The La Guitarra Ag-Au low-sulfidation epithermal deposit, Temascaltepec district, Mexico: vein structure, mineralogy, and sulfide-sulfosalt chemistry, *in* Albinson, T., Nelson, C.E. (eds.), New mines and discoveries in Mexico and Central America: Society of Economic Geologists Special Publication Series, 8, 133-158.
- Camprubí, A., Ferrari, L., Cosca, M.A., Cardellach, E., Canals, A., 2003, Ages of epithermal deposits in Mexico: regional significance and links with the evolution of Tertiary volcanism: Economic Geology, 98, 1029-1037.
- Camprubí, A., González-Partida, E., Torres-Tafolla, E., 2006, Fluid inclusion and stable isotope study of the Cobre–Babilonia polymetallic epithermal vein system, Taxco district, Guerrero, Mexico: Journal of Geochemical Exploration, 89, 33-38.
- Cebula, G.T., Kunk, M.J., Mehnert, H.H., Naeser, C.W., Obradovich, J.D., Sutter, J.F., 1986, The Fish Canyon Tuff: A potential standard for the ⁴⁰Ar/³⁹Ar and fission track dating methods: Terra Cognita, 6, 140.
- Chávez-Álvarez, M.J., Cerca, M., Ferrari, L., 2012, Physical and geological description of the Nanchititla dyke swarm: Revista Mexicana de Ciencias Geológicas, 29, 551-571.
- Chiaradia, M., Schaltegger, U., Spikings, R., Wotzlaw, J.-F., Ovtcharova, M., 2013, How accurately can we date the duration of magmatichydrothermal events in porphyry systems?—An invited paper: Economic Geology, 108, 565-584.
- Dalrymple, G.B., Alexander, E.C., Lanphere, M.A., Kraker, G.P., 1981, Irradiation of samples for ⁴⁰Ar^{/39}Ar dating using the Geological Survey TRIGA reactor: U.S. Geological Survey Professional Paper, 1176, 55 p.
- De Cserna, Z., Fries, C., 1980, Carta Geológica de México, Hoja Taxco 14Q-h(7), Carta Geológica de México, serie de 1:100,000, México, Instituto de Geología, UNAM.
- Díaz-Bravo, B.A., Morán-Zenteno, D.J., 2011, The exhumed Eocene Sultepec-Goleta Volcanic Center of southern Mexico: Record of partial collapse and ignimbritic volcanism fed by wide pyroclastic dike complexes: Bulletin of Volcanology, 73, 917-932.
- Enríquez, E., Rivera, R., 2001, Timing of magmatic and hydrothermal activity at the San Dimas District, Durango, Mexico, *in* Albinson, T., Nelson, C.E. (eds.), New mines and discoveries in Mexico and Central America: Society of Economic Geologists Special Publication Series, 8, 33-38.
- Ferrari, L., Cerca-Martínez, M., López-Martínez, M., Serrano-Durán, L., González-Cervantes, N., 2004, Age of formation of the Tzitzio antiform and structural control of volcanism in eastern Michoacán and western Guerrero: Geos, 24, 165.
- González-Torres, E., 2013, Estratigrafía, geocronología y petrogénesis del campo volcánico de Huautla, Estados de Morelos, Puebla y Guerrero, y sus implicaciones en el origen del magmatismo silícico de la Sierra Madre del Sur: México, Programa de Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México, unpublished PhD dissertation, 259 p.
- González-Torres, E.A., Morán-Zenteno, D.J., Mori, L., Díaz-Bravo, B., Martiny, B.M., Solé, J., 2013, Geochronology and magmatic evolution of the Huautla volcanic field: Last stages of the extinct Sierra Madre del Sur igneous province of southern Mexico: International Geology Review, 55, 1145-1161.
- Kunk, M.J., Sutter, J.F., Naeser, C.W., 1985, High-precision ⁴⁰Ar/³⁹Ar ages of sanidine, biotite, hornblende, and plagioclase from the Fish Canyon tuff, San Juan volcanic field, South-central Colorado [abs.]: Geological Society of America Abstracts with Programs, 17, 636.
- Kunk, M.J., Winick, J.A., Stanley, J.O., 2001, ⁴⁰Ar/³⁹Ar age-spectrum and laser fusion data for volcanic rocks in west central Colorado: U.S. Geological Survey Open-File Report, 01-472, 94 p.
- Lang, B., Steinitz, G., Sawkins, F.J., Simmons, S.F., 1988, K-Ar age studies in the Fresnillo silver district, Zacatecas, Mexico: Economic Geology, 83, 1642-1646.
- Ludwig, K.R., 2003, ISOPLOT, a geochronological toolkit for Microsoft Excel, Version 3.00: Berkeley Geochronology Center Special Publication, 4, 70 p.

- Lyons, J.I., 1988, Geology and ore deposits of the Bolaños silver district, Jalisco, Mexico: Economic Geology, 83, 1560-1582.
- Martínez-Reyes, J.J., Camprubí, A., Uysal, I.T., Iriondo, A., González-Partida, E.; Geochronology of Mexican mineral deposits. I: Veta Madre and Sierra epithermal vein systems, Guanajuato district: Boletín de la Sociedad Geológica Mexicana, submitted.
- McKee, E.H., Dreier, J.E., Noble, D.C., 1992, Early Miocene hydrothermal activity at Pachuca-Real del Monte, Mexico: an example of spacetime association of volcanism and epithermal Ag-Au mineralization: Economic Geology, 87, 1635-1637.
- Meza-Figueroa, D., Valencia-Moreno, M., Valencia, V.A., Ochoa-Landín, L., Pérez-Segura, E., Díaz-Salgado, C., 2003, Major and trace element geochemistry and ⁴⁰Ar/³⁹Ar geochronology of Laramide plutonic rocks associated with gold-bearing Fe skarn deposits in Guerrero state, southern Mexico: Journal of South American Earth Sciences, 16, 205-217.
- Morán-Zenteno, D.J., Alba-Aldave, L., Solé, J., Iriondo, A., 2004, A major resurgent caldera in southern Mexico: the source of the late Eocene Tilzapotla ignimbrite: Journal of Volcanology and Geothermal Research, 136, 97-119.
- Morán-Zenteno, D.J., Cerca, M., Keppie, J.D., 2005, La evolución tectónica y magmática cenozoica del suroeste de México: avances y problemas de interpretación: Boletín de la Sociedad Geológica Mexicana, 57, 319-314.
- Morán-Zenteno, D.J., Cerca, M., Keppie, J.D., 2007, The Cenozoic tectonic and magmatic evolution of southwestern México: advances and problems of interpretation, *in* Alaniz-Álvarez, S.A., Nieto-Samaniego, Á.F. (eds.), Geology of México: Celebrating the Centenary of the Geological Society of México: Geological Society of America Special Paper, 422, 71-91.
- Mori, L., Morán-Zenteno, D., Martiny, B., González-Torres, E., Chapela-Lara, M., Díaz-Bravo, B., Roberge, J., 2012, Thermomechanical maturation of the continental crust and its effects on the Late Eocene-Early Oligocene volcanic record of the Sierra Madre del Sur province of southern Mexico: International Geology Review, 54, 1475–1496.
- Pantoja-Alor, J., 1986, Siete edades geocronométricas cenozoicas de la cuenca media del Río Balsas, in Programas y Resúmenes del Primer Simposio de Geología Regional de México: México, D.F., Universidad Nacional Autónoma de México, Instituto de Geología, 60-61.
- Pi, T., Solé, J., Taran, Y., 2005, (U–Th)/He dating of fluorite: application to the La Azul fluorspar deposit in the Taxco mining district, Mexico: Mineralium Deposita, 39, 976-982.
- Pi, T., Solé, J., Taran, Y., 2006, Reply to discussion on "(U–Th)/He dating of fluorite: application to the La Azul fluorspar deposit in the Taxco mining district, Mexico" (Miner Depos 39:976-982): Mineralium Deposita, 41, 300.
- Ponce, B.F., Clark, K.F., 1988, The Zacatecas mining district: a Tertiary caldera complex associated with precious and base metal mineralization: Economic Geology, 83, 1668–1682.
- Servicio Geológico Mexicano, 2004, Carta geológico-minera, Taxco E14-A68, 1:50,000: Pachuca, Hidalgo, Servicio Geológico Mexicano, Secretaría de Economía.
- Snee, L.W., Sutter, J.F., Kelly, W.C., 1988, Thermochronology of economic mineral deposits: Dating the stages of mineralization at Panasqueira, Portugal, by high precision 40Ar/39Ar age spectrum techniques on muscovite: Economic Geology, 83, 335–354.
- Solari, L.A., Tanner, M., 2011, UPb.age, a fast data reduction script for LA-ICP-MS U-Pb geochronology: Revista Mexicana de Ciencias Geológicas, 28, 83–91.
- Solari, L.A., Gómez-Tuena, A., Bernal, J.P., Pérez-Arvizu, O., Tanner, M., 2010, U-Pb zircon geochronology by an integrated LA-ICPMS microanalytical workstation: achievements in precision and accuracy: Geostandards and Geoanalytical Research, 34, 5–18.
- Tritlla, J., Levresse, G., 2006, Comments on "(U–Th)/He dating of fluorite: application to the La Azul fluorspar deposit in the Taxco mining district, Mexico" by Pi et al. (Mineralium Deposita 39: 976–982): Mineralium Deposita, 41, 296–299.

366

- Valencia, V.A., Ruiz, J., Barra, F., Gehrels, G., Ducea, M., Titley, S.R., Ochoa-Landín, L., 2005, U-Pb zircon and Re-Os molybdenite geochronology from La Caridad porphyry copper deposit: Insights for the duration of magmatism and mineralization in the Nacozari District, Sonora, Mexico: Mineralium Deposita, 40, 175-191.
- Valencia, V.A., Eastoe, C., Ruiz, J., Ochoa-Landín, L., Gehrels, G., González-León, C., Barra, F., Espinoza, E., 2008, Hydrothermal evolution of the porphyry copper deposit at La Caridad, Sonora, Mexico, and the relationship with a neighboring high-sulfidation epithermal deposit: Economic Geology, 103, 473-491.
- Velador, J.M., Heizler, M.T., Campbell, A.R., 2010, Timing of magmatic activity and mineralization and evidence of a long-lived hydrothermal system in the Fresnillo silver district, Mexico: constraints from ⁴⁰Ar/³⁹Ar geochronology: Economic Geology, 105, 1335-1349.

Manuscript received: March 17, 2015 Corrected manuscript received: June 30, 2015 Manuscript accepted: July 8, 2015