Frau et al. (V9 N1)v2

image


The affinities between Ammonites crassicostatus and Ammonites gargasensis 53

image


Paleontología Mexicana Volumen 9, núm. 1, 2020, p. 53 – 72

The affinities between the Lower Cretaceous Ammonoidea Ammonites crassicostatus d'Orbigny, 1841 and Ammonites gargasensis d'Orbigny, 1841

Frau, Camillea,*; Pictet, Antoineb; Caïssa, Mathieuc

a Groupement d'Intérêt Paléontologique, Science et Exposition, 60 bd Georges Richard, 83000 Toulon, France.

b Musée cantonal de géologie, Quartier UNIL - Dorigny, Bâtiment Anthropole, 1015 Lausanne, Switzerland.

c Total S.A., Centre Scientifique and Technique Jean Féger, Pau, France.


* camille_frau@hotmail.fr


Abstract


The present contribution provides a taxonomic reassessment of the Lower Cretaceous ammonite species Ammonites crassicostatus d'Orbigny (type species of Colombiceras Spath) and Ammonites gargasensis d'Orbigny (type species of Gargasiceras Casey) from the Aptian- type area (Apt, Vaucluse, southeastern France). Those nominal species represent two ornamental poles of a single population, here referred to C. crassicostatum. The genus Gargasiceras is, therefore, synonymised with Colombiceras. Implications on the taxonomy at the specific, generic, and supra-generic levels are discussed.


Keywords: Ammonite; Aptian; Cretaceous; Apt; Vaucluse; Taxonomy.


Resumen


El presente trabajo proporciona una reevaluación taxonómica de las especies de ammonites del Cretácico temprano Ammonites crassicostatus d'Orbigny (especie tipo de Colombiceras Spath) y Ammonites gargasensis d'Orbigny (especie tipo de Gargasiceras Casey) del área tipo del Aptiano (Apt, Vaucluse, sureste de Francia). Estas especies nominales representan dos polos ornamentales de una sola población, aquí referida como C. crassicostatum. Por lo tanto, el género Gargasiceras se sinonimiza con Colombiceras. Se discuten las implicaciones taxonómicas a nivel específico, genérico y supragenéric.


Palabras clave: Ammonites; Aptiano; Cretácico; Apt; Vaucluse; Taxonomía.


  1. Introduction


    The knowledge of Mediterranean ammonites during the upper Aptian (Lower Cretaceous) is substantial, and mostly concerns the super-families Douvilleiceratoidea Parona and Bonarelli, 1897, Parahoplitoidea Spath, 1922 and Acanthohoplitoidea Stoyanow, 1949. Despite the tremendous quantity of material illustrated in the literature, a critical review of the dataset shows that the picture one can have on the evolution of the Acanthohoplitoidea is far from being resolved (e.g. Dauphin, 2002; Bulot, 2010; Latil, 2011). This is linked to diverging concepts between

    authors due to the lack of revision of the type material but also to preservation problems of the faunas which clearly affects attempts to identify and compare taxa (Bulot, 2010; Luber et al., 2017).

    This work focuses on the widely quoted acanthohoplitid taxa Ammonites crassicostatus d'Orbigny, 1841 and Ammonites gargasensis d'Orbigny, 1841, which respectively typify the genera Colombiceras Spath, 1923 and Gargasiceras Casey, 1954. Intermediate forms between both taxa have long been quoted in the literature (e.g. Jacob, 1907; Kilian, 1910; Dutour, 2005; Bulot, 2010) but their supposed affinities lack a comprehensive study. The present

    54

    contribution addresses this problem by the revision of the type specimens combined with a statistic approach based on material from the Apt–Gargas type area (Luberon UNESCO Geopark, Vaucluse, southeastern France, Fig. 1A).

    This work follows the most recent standard Mediterranean ammonite scale for the Aptian Stage (Reboulet et al., 2018).


  2. Origin of the material


    As designed by Delanoy in Gauthier et al. (2006, p. 74–75), the lectotypes of Colombiceras crassicostatum and Gargasiceras gargasense are, respectively, the pyritic nuclei MNHN-F.R4345 (Fig. 2A) and MNHN-F.R51910

    (Fig. 2B), from the d'Orbigny collection deposited at the Muséum National d'Histoire Naturelle de Paris, France. They originate from the lower part of the blue-grey marls of the Apt–Gargas area, comprised in the Luberon UNESCO Geopark. Those marls characterize the former middle portion of the Aptian Stage (i.e. ‘Gargasien’) in the

    sense of Leenhardt (1883), Kilian (1887), and Moullade (1965). Unfortunately, the historical outcrops of the Apt– Gargas area are no longer accessible because of extensive urbanization launched in the early sixties (Moullade, 1965). Nevertheless, surrounding localities of the Luberon Geopark provide better outcropping conditions, such as those of La Tuilière and Carniol (Dutour, 2005; Moullade et al., 2006), and allow the collection of abundant quasi-topotypic individuals.

    As documented by Dutour (2005), C. crassicostatum and G. gargasense both appear in the uppermost part of the Dufrenoyia furcata Zone (uppermost lower Aptian) at La Tuilière and Carniol sections. The plexus represents a residual part of the ammonite spectrum, i.e. up to ~ 7% (Dutour, 2005). The abundance of the two taxa subsequently increases in the bottom part of the overlying Epicheloniceras martini Zone (lowermost upper Aptian), and reaches 10% (Carniol – Fig. 1B) to 40% (La Tuilière) of the total ammonite assemblage.


    image

    Figure 1. (A) The Luberon UNESCO Geopark (Vaucluse, southeastern France) including the localities cited in the text (modified from Frau et al., 2017) and (B) the Carniol litho-log with the ammonite spectrum of the uppermost lower (Dufrenoyia furcata Zone) and lowermost upper Aptian (Epicheloniceras martini Zone) documented by Dutour (2005). The location of the upper Aptian base follows Dutour (2005).


  3. Material and methods


    The close relationships between C. crassicostatum and G. gargasense have been repeatedly mentioned in the literature (Jacob, 1907; Kilian, 1910; Dutour, 2005; Bulot, 2010). A wide range of variabilities in robustness and length of the ontogenetic stages is observed in the topotypic population (Dutour, 2005); from robust nuclei with a low rib density (thereafter C. crassicostatum morphotype) to slender finely ribbed ones (thereafter G. gargasense morphotype). Such variability was tentatively interpreted as the expression of the Buckman’s first law of covariation between conch shape and ribbing pattern (Dutour, 2005). Unfortunately, this assumption has never been statistically sustained on a sufficiently large sample. To our knowledge, the C. crassicostatumG. gargasense plexus is known by only twelve figured specimens in its type area, including the two lectotypes (i.e. those figured by Roch, 1927; Thomel, 1980; Conte, 1989; Dutour, 2005; and Gauthier et al., 2006). The numerous pyritic nucleus collected in beds 9 to

    11 at Carniol by the authors form the basis for a standard biometric study (Fig. 1B). Additional specimens from the nearby locality of Les Davids (Fig. 1A) are here included. Unless otherwise specified, the studied specimens belong to the collections of two of us (C.F. and A.P.), currently being deposited at the Maison du Parc Naturel Regional du Luberon (PNRL), Apt, France. This study also involves the type specimens of A. gargasensis var. aptiensis,

    A. gargasensis var. recticostata and A. gargasensis var. attenuata from the Apt–Gargas type area, previously introduced by Roch (1927, pl. XVIII, fig. 5–5a, 6–6a, 7–7a and 8–8a) and deposited in the paleontological collections of the Grenoble Alpes University (see Fig. 2C–E).

    The conch shape has been quantified by standard measurements D (total observed diameter taken on top of the ribs), U (umbilical width), Wh (whorl height), Ww (whorl thickness). The associated ratios (U/D, Wh/D, Ww/D, Ww/Wh – Fig. 3) are investigated and compared to those of the type material (Table 1). All dimensions are given in millimetres. Rv indicates the number of ventral ribs on the half of the last preserved whorl. This study is combined with a qualitative analysis of the ontogeny of the material at our disposal. We performed univariate and bivariate analyses to highlight possible relationships between the variables and to study the evolution of the conch parameters through ontogeny. The suture terminology is that of Korn et al. (2003): E = external lobe; A = adventive lobe; U = umbilical lobe, I = internal lobe.


  4. The CrassicostatumGargasense plexus from carniol


    The studied material is composed of seventy-three specimens (Figs. 4, 5 and 6) originating from around the lower/upper Aptian boundary (D. furcataE. martini zonal


    image


    Figure 2. The lectotypes of (A) Colombiceras crassicostatum (d'Orbigny, 1841), specimen MNHN-F.R4345 (d'Orbigny coll.) and (B) Gargasiceras gargasense (d'Orbigny, 1841), specimen MNHN-F.R51910 (d'Orbigny coll.) designated by Delanoy in Gauthier et al. (2006, p. 74–75). Both from the Aptian marls of Gargas. Plaster cast of the type specimens of (C)

    A. gargasensis var. aptiensis Roch, 1927, specimen UJF-ID.1595 (Lory coll.) from Apt, (D) A. gargasensis var. recticostata Roch, 1927, specimen UJF-ID.1597 (Zürcher coll.) from Barrême, and (E) A. gargasensis var. attenuata specimen UJF-ID.1598 (Lory coll.) from the Aptian marls of Apt (Luberon UNESCO Geopark). Scale bar is 10 mm.


    56

    Table 1. Dimensions of the studied material from Carniol (CLR and CAR) and Les Davids (DAV), and the type specimens of Colombiceras crassicostatum, Gargasiceras gargasensis, G. gargasense var. aptiensis, G. gargasense var. recticostata and G. gargasense var. attenuata.

    Specimens

    Collections

    Morphotypes

    Illustrations

    D

    U

    Wh

    Wb

    Rv

    U/D

    Wh/D

    Wb/D

    Wb/Wh

    U/Wh

    coiling

    C. crassicostatum lectotype

    MNHN-F.R4345

    d'Orbigny coll.

    Crassicostatum

    Fig. 2A

    31

    12

    11

    12

    16

    0.387

    0.355

    0.3871

    0.3871

    1.091

    subvirgacone

    CAR.13

    Pictet coll.

    Crassicostatum

    Fig.4B-B'

    25

    7.77

    10.26


    22

    0.311

    0.41



    0.757


    CAR.14

    Pictet coll.

    Crassicostatum

    Fig.4C-C'

    18.36

    6.69

    7.29

    6.92

    17

    0.364

    0.397

    0.3769

    0.37691

    0.918

    subvirgacone

    CAR.15

    Pictet coll.

    Crassicostatum

    Fig.4D-D'

    17.68

    6.04

    7.23

    7.23

    15

    0.342

    0.409

    0.4089

    0.40894

    0.835

    subvirgacone

    CAR.16

    Pictet coll.

    Crassicostatum

    /

    21.2

    7.9

    7.87


    20

    0.373

    0.371



    1.004


    CAR.19

    Pictet coll.

    Crassicostatum

    Fig. 4F-F'

    16.28

    6.14

    6.06

    6.6

    18

    0.377

    0.372

    0.4054

    0.40541

    1.013

    subvirgacone

    CAR.21

    Pictet coll.

    Crassicostatum

    Fig.4G-G'

    14.59

    5.35

    5.82

    5.79

    19

    0.367

    0.399

    0.3968

    0.39685

    0.919

    subvirgacone

    CAR.22

    Pictet coll.

    Crassicostatum

    Fig.4I-I'

    12.19

    4.86

    4.31

    5.14

    16

    0.399

    0.354

    0.4217

    0.42166

    1.128

    subvirgacone

    CAR.23

    Pictet coll.

    Crassicostatum

    /

    13.9

    4.6

    5.94

    4

    17

    0.331

    0.427

    0.2878

    0.28777

    0.774

    virgacone

    CAR.24

    Pictet coll.

    Crassicostatum

    Fig.4J-J'

    12.66

    4.9

    4.95

    5.32

    16

    0.387

    0.391

    0.4202

    0.42022

    0.99

    subvirgacone

    CAR.25

    Pictet coll.

    Crassicostatum

    /

    14.14

    4.96

    5.66

    6.42


    0.351

    0.4

    0.454

    0.45403

    0.876

    subvirgacone

    CAR.29

    Pictet coll.

    Crassicostatum

    Fig.4H-H'

    12.15

    3.96

    4.82

    4.81

    21

    0.326

    0.397

    0.3959

    0.39588

    0.822

    subvirgacone

    CAR.33

    Pictet coll.

    Crassicostatum

    /

    12.37

    4.54

    4.85

    4.91

    16

    0.367

    0.392

    0.3969

    0.39693

    0.936

    subvirgacone

    CAR.36

    Pictet coll.

    Crassicostatum

    /



    7.45

    6.73








    CAR.8

    Pictet coll.

    Crassicostatum

    /

    13.13

    4.83

    4.78

    5.36


    0.368

    0.364

    0.4082

    0.40823

    1.01

    subvirgacone

    CRL.14

    Frau coll.

    Crassicostatum

    /

    11

    4

    3.8

    5.3

    14

    0.364

    0.345

    0.4818

    0.48182

    1.053

    subvirgacone

    CRL.3

    Frau coll.

    Crassicostatum

    /



    8.5

    7.4








    CRL.4

    Frau coll.

    Crassicostatum

    /



    8.1

    7.2








    CRL.5

    Frau coll.

    Crassicostatum

    Fig.4E-E'

    16.3

    6.8

    5.9

    6

    18

    0.417

    0.362

    0.3681

    0.3681

    1.153

    subophiocone

    DAV.2

    Pictet coll.

    Crassicostatum

    Fig.4A-A'



    9,94,

    8.19








    CAR.26

    Pictet coll.

    Crassicostatum?

    /

    13.79

    4.42

    6.02

    5.49

    20

    0.321

    0.437

    0.3981

    0.39811

    0.734

    subvirgacone

    CAR.34

    Pictet coll.

    Crassicostatum?

    /



    9.03

    8.07








    CAR.51

    Pictet coll.

    Crassicostatum?

    /



    5.4

    5.39








    G. gargasense lectotype MNHN-F.R51910

    d'Orbigny coll.

    Gargasense

    Fig. 2B

    31

    11

    12

    10

    28

    0.355


    0.3226

    0.32258

    0.917

    subvirgacone

    G. gargasense var. aptiensis holotype

    UJF-ID.1595

    Lory coll.

    Gargasense

    Fig. 2C

    28.31

    11.23

    9.83

    8.73

    32

    0.397

    0.398

    0.3084

    0.30837

    1.142

    subvirgacone

    G. gargasense var. recticostata syntype

    UJF-ID.1597

    Zürcher coll.

    Gargasense

    Fig. 2D

    15.58

    5.9

    6.5

    6.58

    24

    0.379

    0.417

    0.4223

    0.42234

    0.908

    subvirgacone

    CAR.1

    Pictet coll.

    Gargasense

    Fig.5D-D'

    15.38

    5.26

    6.05

    5.58

    30

    0.342

    0.393

    0.3628

    0.36281

    0.869

    subvirgacone

    CAR.10

    Pictet coll.

    Gargasense

    /

    12.39

    4.01

    5.2

    4.07

    23

    0.324

    0.42

    0.3285

    0.32849

    0.771

    subvirgacone

    CAR.11

    Pictet coll.

    Gargasense

    /



    6.21

    6.1








    CAR.2

    Pictet coll.

    Gargasense

    Fig.5A-A'


    9.6

    10.32

    8.61

    28







    CAR.28

    Pictet coll.

    Gargasense

    Fig.5M-M'

    10.74

    3.65

    4.47

    4.73

    23

    0.34

    0.416

    0.4404

    0.44041

    0.817

    subvirgacone

    CAR.3

    Pictet coll.

    Gargasense

    Fig.5C-C'

    17.31

    6.96

    6.15

    6.28

    22

    0.402

    0.355

    0.3628

    0.3628

    1.132

    subvirgacone

    CAR.30

    Pictet coll.

    Gargasense

    Fig.5L-L'

    11.96

    4.08

    5.47

    5.38

    22

    0.341

    0.457

    0.4498

    0.44983

    0.746

    subvirgacone

    CAR.32

    Pictet coll.

    Gargasense

    Fig.5K-K'

    10.63

    3.7




    0.348






    CAR.35

    Pictet coll.

    Gargasense

    /



    6.38

    5.21








    CAR.39

    Pictet coll.

    Gargasense

    Fig.5P-P'

    8.59

    3.1

    3.44

    3.79

    22

    0.361

    0.4

    0.4412

    0.44121

    0.901

    subvirgacone

    CAR.4

    Pictet coll.

    Gargasense

    Fig.5E-E'

    14.41

    5.25

    5.73

    5.53

    25

    0.364

    0.398

    0.3838

    0.38376

    0.916

    subvirgacone

    CAR.40

    Pictet coll.

    Gargasense

    Fig.5N-N'

    9.2

    3.23

    3.6

    3.86

    28

    0.351

    0.391

    0.4196

    0.41957

    0.897

    subvirgacone

    CAR.41

    Pictet coll.

    Gargasense

    /

    9.75

    2.64

    4.22

    3.96

    22

    0.271

    0.433

    0.4062

    0.40615

    0.626

    subdiscocone

    CAR.42

    Pictet coll.

    Gargasense

    /

    9.34

    2.89

    3.54

    3.4


    0.309

    0.379

    0.364

    0.36403

    0.816

    subvirgacone

    CAR.43

    Pictet coll.

    Gargasense

    /


    2.19










    CAR.44

    Pictet coll.

    Gargasense

    /

    8.75

    3.49

    3.14

    3.27

    20

    0.399

    0.359

    0.3737

    0.37371

    1.111

    subvirgacone

    CAR.45

    Pictet coll.

    Gargasense

    Fig.5Q-Q'

    6.71

    2.45

    2.75

    2.97


    0.365

    0.41

    0.4426

    0.44262

    0.891

    subvirgacone

    CAR.46

    Pictet coll.

    Gargasense

    /



    6.03

    6.25








    CAR.5

    Pictet coll.

    Gargasense

    /

    14.12

    4.37

    6.3

    5.52

    25

    0.309

    0.446

    0.3909

    0.39093

    0.694

    subvirgacone

    CAR.50

    Pictet coll.

    Gargasense

    /



    6.82

    6.94








    CAR.52

    Pictet coll.

    Gargasense

    /



    4.59

    4.55








    CAR.6

    Pictet coll.

    Gargasense

    /

    12.7

    4.37

    5.56

    5.1

    24

    0.344

    0.438

    0.4016

    0.40157

    0.786

    subvirgacone

    CAR.7

    Pictet coll.

    Gargasense

    Fig.5I-I'

    12.65

    4.72

    5.08

    4.73

    29

    0.373

    0.402

    0.3739

    0.37391

    0.929

    subvirgacone

    CAR.9

    Pictet coll.

    Gargasense

    /

    11.73

    3.25

    5.11

    5.08


    0.277

    0.436

    0.4331

    0.43308

    0.636

    subdiscocone

    CRL.1

    Frau coll.

    Gargasense

    Fig.5B-B'

    24.2

    9.9

    9.2

    7.9

    25

    0.409

    0.38

    0.3264

    0.32645

    1.076

    subvirgacone

    CRL.11

    Frau coll.

    Gargasense

    Fig.5G-G'

    12.4

    4.4

    5.3

    5.1

    24

    0.355

    0.427

    0.4113

    0.41129

    0.83

    subvirgacone

    CRL.12

    Frau coll.

    Gargasense

    /

    12.1

    4.1

    5.2

    4.3

    20

    0.339

    0.43

    0.3554

    0.35537

    0.788

    subvirgacone

    CRL.13

    Frau coll.

    Gargasense

    Fig.5H-H'

    11.8

    4.4

    4.3

    4.6

    21

    0.373

    0.364

    0.3898

    0.38983

    1.023

    subvirgacone

    CRL.16

    Frau coll.

    Gargasense

    /

    10.1

    3.6

    4.1

    4.1


    0.356

    0.406

    0.4059

    0.40594

    0.878

    subvirgacone

    CRL.17

    Frau coll.

    Gargasense

    Fig.5O-O'

    9.1

    3.3

    3.6

    3.6

    22

    0.363

    0.396

    0.3956

    0.3956

    0.917

    subvirgacone

    CRL.6

    Frau coll.

    Gargasense

    /

    15.9

    5.5

    5.8

    4.9

    22

    0.346

    0.365

    0.3082

    0.30818

    0.948

    subvirgacone

    CRL.8

    Frau coll.

    Gargasense

    /

    16.3

    4.9

    6.8

    5.9


    0.301

    0.417

    0.362

    0.36196

    0.721

    subvirgacone

    CRL.9

    Frau coll.

    Gargasense

    /

    14.1

    3.9

    6.6

    5.9

    20

    0.277

    0.468

    0.4184

    0.41844

    0.591

    subdiscocone

    DAV.1

    Pictet coll.

    Gargasense

    /

    10.32

    3.6

    3.67

    4.02

    20

    0.349

    0.356

    0.3895

    0.38953

    0.981

    subvirgacone

    CAR.37

    Pictet coll.

    Gargasense?

    /



    8.75

    7.46








    CAR.38

    Pictet coll.

    Gargasense?

    /




    9.09








    CAR.47

    Pictet coll.

    Gargasense?

    /



    6.49

    6.37








    CAR.48

    Pictet coll.

    Gargasense?

    /



    7.12

    6.71








    CAR.49

    Pictet coll.

    Gargasense?

    /



    6.95

    6.51








    CRL.15

    Frau coll.

    Gargasense?

    /



    5.1

    5.1








    DAV.3

    Pictet coll.

    pathological

    Fig.5R-R'

    14.57

    4.93

    5.73

    4.76

    17

    0.338

    0.393

    0.3267

    0.3267

    0.86

    subvirgacone

    CAR.20

    Pictet coll.

    Transitional

    Fig.6E-E'


    5.86

    6.63

    6.43






    0.884


    CRL.10

    Frau coll.

    Transitional

    Fig.6D-D'

    13.3

    4.2

    5.4

    5.3

    18

    0.316

    0.406

    0.3985

    0.3985

    0.778

    subvirgacone

    CRL.2

    Frau coll.

    Transitional

    Fig.6B-B'

    22

    7.5

    9.7

    8.1

    22

    0.341

    0.441

    0.3682

    0.36818

    0.773

    subvirgacone

    CAR.12

    Pictet coll.

    Transitional

    Fig.6A-A'

    28.48

    9.77

    11.99

    10.29

    22

    0.343

    0.421

    0.3613

    0.36131

    0.815

    subvirgacone

    CAR.17

    Pictet coll.

    Transitional

    Fig.6C-C'

    17.68

    6.31

    7.26

    6.44

    20

    0.357

    0.411

    0.3643

    0.36425

    0.869

    subvirgacone

    CAR.18

    Pictet coll.

    Transitional

    /

    18.09

    6.09

    7.54

    6.94

    18

    0.337

    0.417

    0.3836

    0.38364

    0.808

    subvirgacone

    CAR.27

    Pictet coll.

    Transitional

    /

    14.3

    4.52

    5.4

    5.47

    20

    0.316

    0.378

    0.3825

    0.38252

    0.837

    subvirgacone

    CAR.31

    Pictet coll.

    Transitional

    /

    11.24

    3.71

    4.92

    4.73

    18

    0.33

    0.438

    0.4208

    0.42082

    0.754

    subvirgacone

    CRL.7

    Frau coll.

    Transitional

    /

    17.1

    5.8

    7

    6.6

    19

    0.339

    0.409

    0.386

    0.38596

    0.829

    subvirgacone

    G. gargasense var. attenuata holotype

    UJF-ID.1598

    Lory coll.


    Fig. 2E

    18.91

    6.93

    7.38

    7.79

    52

    0.366

    0.39

    0.412

    0.41195

    0.939

    subvirgacone

    Note: Gray boxes indicate approximate measurements.

    boundary). This material forms a statistically significant sample in the sense of De Baets et al. (2015) and can be considered as representative of a contemporaneous palaeopopulation which allows to test the conspecificity between C. crassicostatum and G. gargasense.


    1. Size


      The diameter of the studied sample ranges from ~ 6 mm to 31 mm with an average value equals to 14.6 mm. The size of the lectotypes of C. crassicostatum (D = 30.5 mm) and

      G. gargasense (D = 27.6 mm) falls into the size range of the material at our disposal. Unfortunately, only pyritic nuclei were collected, hence preventing the recognition of maturity and potential size differentiation of sexual significance. This is evidenced by the size-frequency histogram which is positively skewed and placed on specimens comprised between 10 to 20 mm (Fig. 7A).

      To our knowledge, complete specimens from the Apt–Gargas area remain unknown. The most complete individuals of the C. crassicostatumG. gargasense plexus are those figured by Salas and Moreno (2008, pl. 7, fig. C; pl. 9, fig. A) and Moreno-Bedmar et al. (2012, appendix fig. 8G) from the D. furcataE. martini zonal boundary interval

      of Spain. The diameter of those specimens suggests that the adult size does not exceeded ~ 100 mm.


    2. Conch shape and ornamentation


      1. C. crassicostatum morphotype

        This morphotype represents 30% of the studied population. Its diameter is comprised between 11 and 31 mm (average of ~ 16.2 mm). The conch shape is mainly subvirgacone (0.31 < U/D < 0.42; average of 0.36 – Fig. 8), rarely virgacone (specimen CAR.23) or subophiocone (e.g. specimen CRL.5), with a discoidal to extremely discoidal (0.29 < Ww/D < 0.48; average of 0.40), strongly compressed (0.29 < Ww/Wh < 0.48; average of 0.40), very evolute coiling (0.73 < U/Wh < 1.15; average of 0.94) (Fig. 9).

        A succession of five ontogenetic stages is recognised

        from this morphotype and consists of (Fig. 4):

        1. Embryonic (Ammonitella) stage occupies less than 1 mm. This stage is marked by a distinctive nepionic constriction.

        2. Post-embryonic stage marked by reniform whorl section, crateriform umbilicus, spaced and flat- topped ribs angulate at shoulders or bearing strong tubercles and smooth interspaces. This stage mimics


          image

          Figure 3. Explanatory diagram of the standard conch shape parameters measured, and illustration of the five ontogenetic stages and their schematised whorl sections (not to scale); namely (violet) Ammonitella, (green) Royerianum, (yellow) Gargasense, (red) Crassicostatum, and (white) Tobleri (not seen in our pyritic nuclei) on specimen CRL.1. Acronyms indicate D: diameter; Wh: whorl height; U: umbilical diameter; Ww: whorl width; Rv: number of ventral ribs on the half of the last preserved whorl.


          image


          58

          Figure 4. Selected specimens assigned to the C. crassicostatum morphotype from Carniol (CAR, CRL), and Les Davids (DAV), and illustration of the four ontogenetic stages on enlarged (x2) specimens. (A–A’) DAV.2, (B–B’) CAR.13, (C–C’) CAR.24, (D–D’) CAR.15, (E–E’) CRL.5, (F–F’) CAR.19, (G–G’) CAR.21, (H–H’) CAR.29, (I–I’) CAR.22, and (J–J’) CAR.24. All specimens were coated with ammonium chloride prior to photography. Scale bar is 10 mm. See Fig. 3 for colour legend of the four ontogenetic stages.


          image

          Figure 5. Selected specimens assigned to the G. gargasense morphotype from Carniol (CAR, CRL), and Les Davids (DAV), and illustration of the four ontogenetic stages on enlarged (x2) specimens. (A–A’) CAR.2, (B–B’) CRL.1, (C–C’) CAR.3, (D–D’) CAR.1, (E–E’) CAR.4, (F–F’) CAR.5, (G–G’)

          CRL.11, (H–H’) CRL.13, (I–I’) CAR.7, (J–J’) CRL.15, (K–K’) CAR.32, (L–L’) CAR.30, (M–M’) CAR.28, (N–N’) CAR.40, (O–O’) CRL.17, (P–P’)

          CAR.39, (Q–Q’) CAR.45, and (R–R’) DAV.3 (pathological specimen). All specimens were coated with ammonium chloride prior to photography. Scale bar is 10 mm. See Fig. 3 for colour legend of the four ontogenetic stages.

          60

          the juvenile features of the Douvilleiceratidae ProchelonicerasCheloniceras lineage known as the Royerianum stage in litt. (Ropolo et al., 2008).

        3. Gargasense juvenile stage (presents between ca.2.7

          < D < ca.3.8 mm) marks a change from a reniform to a subquadatre whorl section with venter bearing a weak or moderately deep furrow. Following the Royerianum stage, the primary ribs maintain a tubercle on the upper flank, but secondaries – generally one to four – appear. The secondary ribs start at the peri-umbilical margin, they are simple albeit sometimes bifurcate or coalescent on the primaries at varying heights. The primary ribs are simple or rarely bifurcate. Those ribs become enlarged on the flank and can develop tubercles at the point of furcation. All ribs and branches tend to be flat-topped on the venter.

        4. Crassicostatum sub-adult stage starts between ca.5.1 < D < ca.13.2 mm and extends up to the end of the preserved outer whorls. The ornamentation continues the Gargasense juvenile stage, but the number of secondaries quickly decreases. The primary ribs become stronger, they are simple and bifurcate, rarely trifurcate, and commonly separated by a single secondary starting at varying heights.

          The point of furcation is low, at the umbilical margin, or high on the flank and develop strong, elongated tubercles, and then strong thickenings. All ribs and branches are flat-topped or cuneiform on the venter. The ventral furrow is attenuated during the growth and progressively disappear because of ventral rounding.

        5. The outer whorl ontogeny is not observed in the material at our disposal since it consists of pyritic nuclei. Nevertheless, the ribbing of the

          C. crassicostatum specimens illustrated by Salas and Moreno (2008, pl. 7, fig. C; pl. 9, fig. A), and Moreno-Bedmar et al. (2012, appendix fig. 8G) modifies into a regular alternation of strong, flexuous primary rib in the body chamber, with or without a slight retrocurvature at the umbilical margin, and one secondary starting at mid-flank. The whorl section is compressed, suboval, higher than wide, with a rounded venter. These features characterise the species Colombiceras tobleri (Jacob and Tobler, 1906); the latter being known as the potential direct descendant of C. crassicostatum (see discussion below). This stage is here referred to as the Tobleri adult stage (see also Fig. 3).



          image

          Figure. 6. Selected specimens assigned to the transitional forms between the C. crassicostatum and G. gargasense morphotypes from Carniol (CAR, CRL), and Les Davids (DAV), and illustration of the four ontogenetic stages on enlarged (x2) specimens. (A–A’) CAR.12, (B–B’) CRL.2, (C–C’) CAR.17, (D–D’) CRL.10, (E–E’) CAR.20. All specimens were coated with ammonium chloride prior to photography. Scale bar is 10 mm. See Fig. 3 for colour legend of the four ontogenetic stages.

      2. G. gargasense morphotype

        This morphotype represents 60% of the study sample. Its diameter is comprised between 6 and 28 mm (average of ~ 13.9 mm). The conch shape is mainly subvirgacone (0.27 < U/D < 0.41; average of 0.35) (Fig. 8), or rarely subdiscocone (e.g. specimens CAR.9, CAR.41, and CRL.9), with a discoidal to extremely discoidal (0.31 < Ww/D < 0.45; average of 0.38), strongly compressed (0.31 < Ww/Wh < 0.45; average of 0.38), evolute to very evolute coiling (0.59

        < U/Wh < 1.14; average of 0.87) (Fig. 9).

        This morphotype develops the four ontogenetic stages defined in the Crassicostatum morphotype but with major modifications of the Crassicostatum stage (Fig. 5):

        • After the ammonitella, a similar Royerianum stage develops in most of specimens. However, this stage can sometimes be extended compared to the

          C. crassicostatum morphotype (e.g. Fig. 5D, H, N, O, P and Q). In those specimens, the ribbing is smoothed at the end of the stage and they develop a sub-rounded whorl section. Transition with the succeeding stage is more gradual as illustrated by the progressive appearance of the secondary ribs.

        • The Gargasense juvenile stage appears between ca.2.9 < D < ca.5.95 mm. As a result, it appears slightly delayed and extended compared to the C. crassicostatum morphotype. The whorl section becomes distinctly subquadatre with flattened flanks and venter. The maximum thickness of the whorl

          section is reached at the umbilical margin. Primary ribs are attenuated and tubercles at the point of furcation are mostly lacking or changed as slight thickenings (e.g. Fig. 5D). The ventral furrow is in most cases better expressed and can form a discrete smooth ventral band (e.g. Fig. 5O).

        • The Gargasense juvenile stage progressively gives way to a modified Crassicostatum sub-adult stage consisting of finely ribbed, more or less regular alternation of simple, rarely bifurcate, primary ribs and generally one or secondaries starting at variable heights. All ribs and branches are sharp-edged and less cuneiform on the venter with progressively attenuated ventral furrow until its disappearance in larger specimens (such as in the lectotype, see Fig. 2B). This stage maintains a subrectangular whorl section with a flattened venter.

        • Adult individuals of the G. gargasense morphotype are scarce in the literature and the presence of a Tobleri stage remains unclear.

        Note that few specimens are transitional between the C. crassicostatum and G. gargasense morphotypes regarding conch shape and ribbing (see Fig. 6). These specimens maintain the compressed, subrectangular whorl section as those seen in G. gargasense sub-adult forms but develop a ribbing that better conform to the Crassicostatum stage.



        image

        Figure 7. Frequency histograms of the conch shape parameters (D, U, Wh, Ww) and ratios (U/D, Wh/D) of the C. crassicostatum G. gargasense

        plexus from the Aptian-type area.


        image

        62

        Figure 8. Relationships between the U/D and Ww/U ratios for describing the conch shape of the the C. crassicostatum (blue squares) and G. gargasense (green squares) morphotypes, and the transitional forms (grey squares), from Carniol and Les Davids, as well as those of the C. crassicostatum, G. gargasense, G. gargasense var. aptiensis, G. gargasense var. recticostata, and G. gargasense var. attenuata type specimens.



      3. Biometric investigation

        Although the distinction of two morphotypes can be a priori performed, the box plots of the four conch shape ratios (Ww/D, Ww/H, U/Wh and U/D – Fig. 9A–D) show that the two morphological groups do not differ significantly as indicated by their overlap. There is no major shell difference since the frequency histograms of the conch shape parameters D, U, Wh and Ww (Fig. 7A–D), as well as those of the ratios U/D and Ww/D (Fig. 7E and F) exhibit normal distributions. Finally, the investigation on the dimensional parameter growth of the shell (U, Wh and Ww in function of D - Fig. 10A–C; and Ww in function of Wh - Fig. 10D) of the seventy-three specimens show homogeneous scattering around the mean curve (with R² very high > 0.91), with a linear, isometric and harmonic growth which corresponds to the relationship Y=bD. Dense and homogenous scatter plots of the shell ratios U/D and Ww/Wh in function of D (Fig. 10E and F) are observed. Regarding the costal density on the venter, the values are comprised between 15 and 32 ventral ribs on the last preserved whorls of the studied specimens (including the types), except for the holotype of

        G. gargasense var. attenuata that reaches 52 ventral ribs and thus strongly deviates from the point cloud (Fig. 10G).


        Taken together, the biometric investigation gives evidence of the sample homogeneity (except for G. gargasense attenuata regarding its ribbing), and the existence of a continuum in conch shapes. As such, the hypothesis of conch shape covariation proposed by Dutour (2005) for explaining the two morphotypes is unlikely.


    3. Suture line


      D'Orbigny (1841, pl. 59, fig. 3 and 7) provided hand- drawings of the suture lines of both C. crassicostatum and G. gargasense (here re-illustrated on Fig. 11A–B). The suture line of the C. crassicostatumG. gargasense plexus shows the typical features of Cretaceous quinquelobate ammonites sensu Korn et al. (2003). The external lobe (E) is bifid with a bipartite median saddle while the adventive one (A) is trifid, more or less symmetrical with a long central branch. Between them, the saddle E/A is high, distinctly, or weakly asymmetrically, bifid. There are two umbilical lobes; the U2 is bifid while the U1 is shallow and trifid in both species but less distinct in C. crassicostatum. The saddle A/U2 is asymmetrical and narrower than the E/A one. D'Orbigny does not provided description of the internal (I) lobe.


      image

      Figure 9. Box plots of shell shape ratios (A) Ww/D, (B) Ww/H, (C) U/Wh, and (D) U/D for the C. crassicostatum and G. gargasense morphotypes. The boxes represent the interquartile range (i.e. the values ranging from the first to third quartiles, which are the 25th and 75th percentiles, respectively), the median value (white line), the extended interquartile range (whiskers) and the eventual outliers (isolated black dots).

      64

      According to the revision of Bogdanova and Mikhailova (2016), it is deep, narrow and bifid with almost parallel serrated sides. The saddle U1/I is narrow bifid with a deep secondary lobe. Despite being observed on a limited number of specimens, these features do not appear to vary on the material at our disposal (Fig. 11C–F).


    4. Pathology


      In the material at our disposal, at least three specimens show pathologies (= 4% of the study sample):

      • Specimen CAR.29 (Fig. 4H) shows a slight anomalous rib branching on the venter.

      • Specimen DAV.3 (Fig. 5R) has a slightly deformed shell with a chaotic sculpture with respect to the ontogenetic stages defined above. This refers to the chaotica forma-type pathology sensu Keupp (1977) and could either be related to endo and exogenic causes (Hengsbach, 1996).

      • Specimen CRL.10 (Fig. 6D) shows a conspicuous, temporary bulbous swelling of the external part of the venter. It corresponds to the inflata forma-type pathology as defined by Keupp (1976) and related to parasitism (Hengsbach, 1996).


  5. Discussion


    1. Species level


      Our biometric investigation reveals a continuum of conch shapes between the C. crassicostatum and

      G. gargasense morphotypes. The variability observed mainly relates to accelerated/decelerated ornamental sequence. The C. crassicostatum morphotype develops earlier the Crassicostatum stage while the G. gargasense morphotype retains ribbing and conch shape of the Gargasense stage throughout most of the preserved sub- adult whorls. The variable duration of the ornamental stages accounted for the age-old taxonomic distinction between the C. crassicostatum and G. gargasense morphotypes. As such, C. crassicostatum and G. gargasense might be interpreted, respectively, as tachymorphic and bradymorphic forms sensu Besnozov and Mitta (1995) of a single palaeobiological entity. The lectotypes of C. crassicostatum and G. gargasense correspond to extreme representatives of the variation series (= typical tachy- and bradymorph as defined by Besnozov and Mitta, 1995). The two species can be, therefore, considered as synonym.

      We thereafter retain C. crassicostatum as the senior subjective synonym of G. gargasense and its subspecies aptiensis and recticostata. In the lack of date priority between the two taxa, this synonymy is supported by the long quoting history of C. crassicostatum in the literature and its historical use as a zonal index of the Aptian in the Caucasus (Renngarten, 1951; Drushchits and Mikhailova,

      1979; Drushchits et al., 1985, 1986), Lesser Balkhan and Kyurendag (Bogdanova and Mikhailova, 2016 and references therein) and Vocontian through as well (Dauphin, 2002). Consequently, the genus Gargasiceras is here considered as junior subjective synonym of Colombiceras according to the ICZN's rules. Revision of the synonymy of C. crassicostatum is given in appendix 1. As herein understood, the species occurs in the Mediterranean- Caucasian Subrealm of the Tethyan Realm sensu Westermann (2000) and remains doubtful in Japan and the Caribbean domain.

      Note that the taxon G. gargasense var. attenuata can be easily distinguished from the C. crassicostatum type population by its high costal density. Its generic assignment remains unclear and the taxon is provisionally kept in Colombiceras pending further refinements.


    2. Genus level


      1. Specific content

        Based on the present results, the genus Colombiceras is here restricted to the following taxa:

        • C. crassicostatum (and its junior subjective synonyms G. gargasense, G. gargasense var. aptiensis, and G. gargasense var. recticostata).

        • C. tobleri and the closely allied, virtually coexisting taxa Acanthohoplites tobleri var. discoidalis Sinzow, 1908, Acanthohoplites subpeltoceroides Sinzow, 1908, Acanthohoplites quadratus Kazansky, 1914, Acanthohoplites rectangularis Kazansky, 1914, Acanthohoplites sinzowi Kazansky, 1914 and Acanthohoplites subtobleri Kazansky, 1914, Colombiceras lecollei Cantú-Chapa, 1963, Colombiceras medellini Cantú-Chapa, 1963, Colombiceras bogdanovae (Tovbina, 1982), Colombiceras korotkovi Bogdanova and Mikhailova, 2016 and doubtfully Acanthohoplites subtobleri batinensis Dimitrova, 1967. By comparison with the type species, the gathers of C. tobleri group taxa with Crassicostatum-like morphotype with earlier acquisition of a rounded whorl section, reduced Gargasense and Crassicostatum stages in the inner whorls, and a long Tobleri adult stage on the outer whorl (compare with Fig. 12A). The species is of younger age since it is reported in the middle to upper part of the E. martini Zone in the Mediterranean-Caucasian settings (Dauphin, 2002; Luber et al., 2017). A direct phyletic relationship between C. crassicostatum and C. tobleri is likely and may correspond to a peramorphic evolution that deserves further investigation.

        • C. spathi Humphrey, 1949 is based on a moderate- sized, calcareous mold from the Aptian of La Peña Formation of northern Mexico (see illustration of the holotype in Barragán et al., 2016, Fig. 3) (Fig. 12B). The holotype lacks inner whorls,



          image

          Figure 10. Bivariate diagrams of the conch parameters (A) U, (B) Wh, (C) Ww, and (G) Rv in function of D; (D) Ww in function of Wh; and the ratios

          (E) U/D, and (F) Ww/Wh in function of D for the 73 specimens of the C. crassicostatum G. gargasense plexus from the Aptian-type area.

          66

          and this prevents further comparison with C. crassicostatum. Subsequent illustrations of northern Mexican colombiceratids assigned to C. spathi suggest that the species is closely related to the group of C. tobleri (compare for example Barragán et al., 2016, fig. 1D and H and the typological taxa Colombiceras subtobleri and C. quadratus).

        • C. formosum Sharikadze, Kakabadze and Hoedemaeker, 2004 is close to C. crassicostatum but develops a sub-rectangular whorl section in the adult with a flattened venter (see holotype in Fig. 12C). Its juvenile whorls are densely ribbed and then develop a Crassicostatum-like stage. It gives way to a short terminal stage on the outer whorls consisting of slitghly prorsiradiate primary ribs and secondaries.

        • C. satowi Shimizu, 1931 from the Aptian of Japan has been recently regarded as a nomen dubium by Futakami (2018) since the holotype of this species “consists of an extremely small shell (D = 17 mm) which does not allow a sufficient comparison of morphological features with other species of the genus Colombiceras” (see holotype in Fig. 12D). Japanese colombiceratids figured by Futakami (2018) have been referred to C. spathi. From our point of view, the variability of the Japanese colombiceratids conform to those documented in C.

          crassicostatum, with gargasense (Futakami, 2018, fig.4 D–E, M–N, O; fig. 7C) and crassicostatum morphotypes (the others ones illustrated by Futakami, 2018). They similarly develop a moderate adult size (ca. 70 mm according to Futakami, 2018), sub-rectangular to sub-elliptical whorl section with a flattened venter. The affinities of this material with C. satowi and C. crassicostatum remains to be investigated.

          • and doubtfully C. attenuatum.


        Other taxa referred to as Colombiceras in the Fossilium Catalogus by Klein and Bogdanova (2013) belong to diverse acanthohoplitid forms which deserve further investigation:

        • C. caucasicum (Luppov, 1949) and the allied taxon

          C. ellissoae Kvantaliani, 1971 develop a short juvenile stage with strong ribs giving way to a Crassicostatum-like stage lacking tubercles. The whorl section is distinctly sub-rounded and lacks a ventral furrow. The two taxa are closely related, if not similar, to juveniles (or ?microconchs) of Egoianiceras angulatum (Egoian, 1969), the type species of Egoianiceras Avram, 1974 (compare for example with Avram, 1974, pl. 1, figs. 3, 4).

        • C. caucasicum tyrrhenicum Wiedmann and Dieni, 1968 is based on a small-sized acanthohoplitid fragment marked by a robust ornamentation with


          image

          Figure 11. Comparison between the original suture lines of (A) C. crassicostatum and (B) G. gargasense hand-drawn by d'Orbigny (1841) and selected specimens from the Aptian-type area (C) CAR.12, (D) CRL.1, (E) CAR.29, (F) CAR.28. Not to scale.

          flat-topped ribs and prominent tubercles at the point of furcation of the primary rib. These features differ from those observed in typical C. caucasicum. Considering that its complete ontogeny remains unknown, C. caucasicum tyrrhenicum should be considered as a nomen dubium pending new collection at its type locality (i.e. Orosei, Sardinia).

        • C. robustum Scott, 1940 merely represents a juvenile and/or microconch of the Californian "Hypacanthoplites" sensu Young (1974).

        • C.? brumale Stoyanow, 1949 is closely allied to Immunitoceras immunitum Stoyanow, 1949 that typifies the genus Immunitoceras Stoyanow, 1949.

        • The taxonomy of C. riedeli Cantú-Chapa, 1963 remains unclear since its holotype lacks inner whorls.

        • C. strangulatum Collignon, 1962 may represent a juvenile form of the "Acanthoplites" sensu Collignon (1962).

        • C. waageni Spath, 1930 is based on a hand-drawing illustration. The species share general features of the adult Colombiceras (i.e. Tobleri stage). However, its juvenile morphology remains unknown and prevents further discussion. Validity of the species can only be established after re-examination of the type specimen.

          The species previously assigned to the genus Gargasiceras (see Klein and Bogdanova, 2013) can be easily distinguished from C. crassicostatum by their morphological and ornamental features, age and

          palaeobiogeographic distribution. The following species deserve further investigations:

        • Gargasiceras pulcher (Riedel, 1938), G. acutecostatum (Riedel, 1938), G. adkinsi (Humphrey, 1949) G. subpulcher Sharikadze, Kakabadze and Hoedemaeker, 2004 and probably

        G. interiectum (Riedel, 1938) form a homogenous endemic group of the Caribbean domain (see discussion in Ovando-Figueroa et al., 2015). These species closely resemble Hypacanthoplites? rursiradiatus Humphrey, 1949 which typify the genus Penaceras Cantú-Chapa, 1963.

        • The subspecies Gargasiceras lautum lautum (Glazunova, 1953) and Gargasiceras lautum laxa (Glazunova, 1953), originating from the P. melchioris Zone sensu lato, are based on a very limited number of specimens from the Mangyshlak (Glazunova, 1953), Bulgaria (Dimitrova, 1967) and southeastern Spain (Moreno-Bedmar et al., 2008). They show close affinities with the juveniles (or

        ?microconchs) of the type species Egoianiceras angulatum but with a higher rib density (compare with Egoian, 1969, pl. XII, fig. 8 and 9).

        • Gargasiceras (?) juanwyatti Etayo-Serna, 1979 is based on a lower Albian micromorphic acanthohoplitid form. Its closest affinities are found with the inner whorls of the species Juandurhamiceras juandurhami Etayo-Serna, 1979 of same age and origin (Etayo-Serna, 1979, p. 108).


        image


        Figure 12. Re-illustration of (A) syntype of Colombiceras tobleri (Jacob and Tobler, 1906) (plaster cast FSL.13322 of the Faculté des Sciences de Lyon);

        (B) holotype UMMP.24298 (University of Michigan Museum of Paleontology) of Colombiceras spathi Humphrey, 1949 (modified from Barragán et al., 2016); (C) holotype RGM.283011 (Nationaal Natuurhistorisch Museum, Leyde) of C. formosum Sharikadze, Kakabadze and Hoedemaeker, 2004 (modified from Sharikadze et al., 2004), and (D) holotype IGPS.35387 (Tohoku University Museum, Sendai, Miyagi) of Colombiceras satowi Shimizu, 1931 (modified from Futakami, 2018). Scale bar 10 mm.

        68

      2. Subgenus

        In the Fossilium Catalogus, Klein and Bogdanova (2013) identified two Colombiceras subgenera – i.e. Colombiceras and Egoianiceras – that have been considered as antidimorphs by Avram (1974). The subgenus Egoianiceras groups the species Colombiceras (Egoianiceras) multicostatum Avram, 1974 and Colombiceras (Egoianiceras) angulatum Egoian, 1969; the type species. The Egoianiceras relatives differ from Colombiceras by their rounded juvenile whorl section and the lack of ventral furrow. In those taxa, the Gargasense and Crassicostatum sub-adult stages are reduced and attenuated while a Tobleri stage extends over most of the ontogeny. As a result, these features better compare to late Colombiceras of the group of C. tobleri. However, the Egoianiceras relatives develop a more densely ribbed Tobleri stage (Rv > 30 in C. (E.) multicostatum). Moreover, the Egoianiceras relatives are known to flourish in the middle to upper part of the upper Aptian. This age is younger than that of C. crassicostatum and does not support the Avram’s dimorphism hypothesis between the two subgenera. Pending further investigation, Colombiceras and Egoianiceras can be considered as two distinct valid genera.


    3. Supra-generic level


      In the current state of knowledge, Procolombiceras (including P. antiquus Sharikadze, 1979 and P. aptus Sharikadze, 1979, its type species) from the D. furcata Zone of Georgia corresponds to the most primitive Acanthohoplitidae. Its type species can be easily distinguished from C. crassicostatum by its douvilleiceratid shell morphology marked by moderately involute coiling with a deep umbilicus, depressed subrounded whorl section with rounded flanks and venter throughout ontogeny. The

      P. aptusantiquus group is known by a limited number of specimens, most of them illustrated by Sharikadze (1979).

      Both Procolombiceras and Colombiceras have been up to date classified in the subfamily Acanthohoplitinae and in the family Parahoplitidae (Klein and Bogdanova, 2013). According to Spath (1931), Casey (1965), Wright et al. (1996) and Dutour (2005), the Acanthohoplitinae have derived from late Deshayesitidae during the D. furcata Zone. However, this view has been subsequently challenged by some authors given the lack of intermediate forms and the strong discrepancy in the suture line between deshayesitid and acanthohoplitid ammonites, (e.g. Wiedmann, 1966; Tovbina, 1979; Sharikadze, 2015). Those authors favoured an evolution of the Acanthohoplitinae within the Douvilleiceratidae. This would be supported by similar juvenile ontogenetic stage (i.e. Royerianum stage) and suture line shared by C. crassicostatum and the ProchelonicerasCheloniceras lineage. According to Bogdanova and Mikhailova (2016), the morphogenesis of the suture of the basal Colombiceras relatives is similar to that observed in the Douvilleiceratidae over the first

      two whorls and subsequently change as the result of the division of the U2/U3 saddle. As further evidence, typical parahoplitid relatives (Parahoplites) markedly postdate the inception of both Procolombiceras and Colombiceras since they appear in the middle part of the upper Aptian (Casey, 1965; Dauphin, 2002; Bogdanova and Mikhailova, 2016). Ongoing study suggests that the genus Parahoplites has merely evolved from late Epicheloniceras of the group of E. buxtorfi (Jacob and Tobler, 1906) by accelerated hypermorphosis in the sense of Dommergues et al. (1986). As a result, we here considered that both acanthohoplitid and parahoplitid lineages iteratively evolved from the Douvilleiceratidae. The deep morphological and ornamental modifications, combined with deep changes in the suture line, support the separate use of the superfamilies Douvilleiceratoidea, Acanthohoplitoidea and Parahoplitoidea as suggested by Sharikadze (2015).


  6. Conclusion


Based on a biometric study conducted on topotype material, we herein consider the Acanthohoplitidae Colombiceras crassicostatum and Gargasiceras gargasense as representative of a single palaeopopulation, in which their respective type specimens characterize two extreme ornamental poles, i.e. tachy- versus bradymorph, respectively. Both species are regarded as subjective synonyms and we retain C. crassicostatum as the valid name following historical precedence and Gargasiceras is, therefore, synonymised with Colombiceras. Revision of the specific content of both Colombiceras and Gargasiceras genera suggests an overlooked biodiversity in the Acanthohoplitidae that deserves comprehensive taxonomic investigations.


Acknowledgements


We gratefully acknowledge Christine Balme and Stéphane Legal for their help in obtaining the land access permit DDT/SEMN.2012/141 from the Parc Naturel Régional du Lubéron. For providing photographs of type specimens or access to the collection in their care, we warmly thank Philippe Loubry (UPMC/MNHN, Paris) and Emmanuel Robert (Université Claude Bernard Lyon I). Dr. Cyprien Lanteaume (TOTAL S.A., Pau) and Dr. Anthony J.-B. Tendil (Badley Ashton and Associates Ltd, Horncastle) are thanked for helping the first author on the field. We wish to express our warmest thanks to the Paleontología Mexicana Editor-in-chief Josep A. Moreno- Bedmar (Universidad Nacional Autónoma de México), and the reviewers Gérard Delanoy (Université Nice Sofia Antipolis) and Miguel Company (Universidad de Granada) for their constructive comments on the original manuscript.


References


Arkell, W.J., Kummel B., Wright, C.W., 1957, Mesozoic Ammonoidea, in Moore, R.C. (Ed.), Treatise on Invertebrate Paleontology. Part L, Mollusca 4, Cephalopoda, Ammonoidea: New York and Lawrence, The Geological Society of America and The University of Kansas Press, 80–437 pp.

Avram, E., 1974, Egoianiceras nouveau sous-genre du genre Colombiceras Spath, 1923 (Ammonitina): Institutul Geologic Bucureşti, Dări de Seamă ale şedinţelor, 60(3), 3–10.

Barragán, R., Moreno-Bedmar, J.A., González-Arreola, C., 2016, Aptian ammonites from Mazapil, Zacatecas State (north-central Mexico) studied by BURCKHARDT in 1906: A revision: Carnets de Geologie, 16(14), 355–367.

Beznosov, N.V., Mitta, V.V., 1995, Polymorphism in the Jurassic ammonoids: Paleontological Journal, 29, 46–57.

Bogdanova, T.N., Mikhailova, I., 2007, Ammonoidea of the Middle Aptian (Biodiversity and Evolution), in Pereshova, E.M. (Ed.), The Cretaceous System in Russia and neighbouring States: problems of stratigraphy and palaeogeography: Saratov, Saratov Chernyshevsky State University, 36–62.

Bogdanova, T.N., Mikhailova, I.A., 2016, Middle Aptian biostratigraphy and ammonoids of the Northern Caucasus and Transcaspia: Paleontological Journal, 50, 725–933.

Bronn, H.G., 1852, Lethaea Geognostica. Zweiter Band 3. Meso- Lethaea. V. Theil. Vierte Periode. Kreide-Gebirge. Cephalopoda Tetrabranchia, 316–337.

Bulot, L.G., 2010, Appendix: Systematic paleontology of Aptian and Albian ammonites from southwest Iran, in Vincent, B., van Buchem, F.S.P., Bulot, L.G., Immenhauser, A., Caron, M., Baghbani, D., Huc, A.Y. (Eds.), Carbon-isotope stratigraphy, biostratigraphy and organic matter distribution in the Aptian – Lower Albian successions of southwest Iran (Dariyan and Kazhdumi formations): GeoArabia Special Publication, 4, 167–197.

Cantú-Chapa, A., 1963, Étude biostratigraphique des ammonites du centre et de l’est du Mexique (Jurassique supérieur et Crétacé) : Mémoire de la Société Géologique de France. Nouvelle Série 42, 99, 102 pp.

Casey, R., 1954, New genera and subgenera of lower Cretaceous ammonites: Journal of the Washington Academy of Science, 44, 106–115.

Casey, R., 1965, A monograph of the Ammonoidea of the Lower Greensand, part VI: Palaeontographical Society, 399–546.

Collignon, M., 1962, Atlas des fossiles caractéristiques de Madagascar (Ammonites). Fascicule IX. (Aptien): Service Géologique de Madagascar, Tananarive, pl. CCXV–CCXLI.

Conte, G., 1989, Fossiles du plateau d’Albion: Les Alpes de Lumière, 99, 1–72.

Dauphin, L., 2002, Litho-, bio-, et chronostratigraphie comparées dans le Bassin Vocontien à l’Aptien: France, Université de Lille, Ph.D. thesis, 451 pp.

De Baets, K., Bert, D., Hoffmann, R., Monnet, C., Yacobucci, M.M., Klug, C., 2015, Ammonoid intraspecific variability, in Klug, C., Korn, D., De Baets, K., Kruta, I., Mapes, R.H. (Eds.), Ammonoid Paleobiology: From Anatomy to Ecology: Topics in Geobiology, 43, 359–426.

Dimitrova, N., 1967, Fosilite na Bulgariya. IV. Dolna Kreda–Glavonogi (Fossils of Bulgaria. IV. Lower Cretaceous Cephalopoda (Nautiloidea and Ammonoidea): Bulgarian Academy of Sciences, 424 pp.

Dommergues, J.-L., David, B., Marchand, D., 1986, Les relations ontogenèse-phylogenèse: applications paléontologiques: Géobios, 19, 335–356.

Drushchits, V.V., Mikhailova, I.A., 1979, The Aptian Stage and its zonal division: Izvestiya Akademiinauk SSSR, Seriya Geologicheskaya, 4, 47–62 (in Russian).

Drushchits, V.V., Mikhailova, I.A., Tkachuk, G.A., 1985, Stratigraphy of the Lower Cretaceous deposits of the Northern Caucasus and


Ciscaucasia, in Nizhnii mel yuga SSSR (Lower Cretaceous of the Southern USSR), Nauka, 26–70 (in Russian).

Drushchits, V.V., Mikhailova, I.A., Tkachuk, G.A., 1986, Caucasus: Lower series: Central part of the northern slope of the Caucasus, in Stratigrafiya SSSR. Melovaya sistema (Stratigraphy of the USSR: Cretaceous System): Nauka, Moscow, 152–160 (in Russian).

Dutour, Y., 2005, Biostratigraphie, évolution et renouvellements des ammonites de l'Aptien supérieur (Gargasien) du bassin vocontien (Sud-Est de la France): France, University Claude Bernard–Lyon 1, Ph.D. thesis, 302 pp.

Egoian, V.L., 1969, Ammonites from the Clansayan of the Western Caucasus: Trudy Krasnodarskogo Filiala Vsesojuznogo Neftegazovogo NauchnoIssledovatel'skogo lnstituta, 19, 126–317 (in Russian).

Eristavi, M.C., 1961, Aptian and Albian ammonites of the north Caucasus: Trudy Geologicheskogo Instituta Akademia Nauk Gruzinskoi SSR, 12, 41–77 (in Russian).

Etayo-Serna, F., 1979, Zonation of the Cretaceous of central Columbia by Ammonites: Publicaciones Geológicas Especiales del Ingeominas, 2, 1–186.

Frau, C., Pictet, A., Spangenberg, J., Masse, J.-P., Tendil, A.J.B.T., Lanteaume, C., 2017, New insights on the age of the post- Urgonian marly cover of the Apt region (Vaucluse, SE France) and its implications on the demise of the North Provence carbonate platform: Sedimentary Geology, 359, 44–61.

Futakami, M., 2018, Aptian ammonite fauna from the Yezo Group of the Urakawa area in Hokkaido, Japan: Cretaceous Research, 89, 224–234.

Garcia, R., Moreno-Bedmar, J.A., Araguz, S., 2007, Noves dades dels ammonits de l'Aptià del Massís del Garraf (Barcelona): Batalleria, 13, 47–52.

Gauthier, H., Busnardo, R., Combemorel, R., Delanoy, G., Fischer, J.-C., Guerin-Franiatte, F., Joly, B., Kennedy, W.J., Sornay, J., Tintant, H., 2006, Révision critique de la Paléontologie Française d’Alcide d’Orbigny, Volume IV, in Fischer, J.C. (Ed.), Céphalopodes Crétacés: Leiden, Backhuys Publisher, 292 pp.

Glazunova, A.E., 1953, Ammonites of the Aptian and Albian of Kopet- Dagh, Lesser and Great Balkhan and Mangyshlak: Moscow, Gosgeolizdat, 156 pp. (in Russian).

Hengsbach, R., 1996, Ammonoid pathology, in Landman, N.H., Tanabe, K., Davis, R.A. (Eds.), Ammonoid Paleobiology: New York, Plenum Press, 581–605.

Humphrey, W.E., 1949, Geology of the Sierra de los Muertos area, Mexico: Bulletin of the Geological Society of America, 60, 89–176.

Jacob, C., 1907, Études paléontologiques et stratigraphiques sur la partie moyenne des terrains crétacé dans les Alpes Françaises et les régions voisines: Travaux du Laboratoire de Géologie de la Faculté des Sciences de l’Université de Grenoble, 8, 280–590.

Jacob, C., Tobler, A., 1906, Étude stratigraphique et paléontologique du Gault de la vallée de la Engelberger Aa (Alpes calcaires suisses, environs du Lac des Quatre Cantons): Mémoire de la Société Paléontologique de Suisse, 33, 3–26.

Joly, B., Delamette, M., 2008, Les Phylloceratoidea (Ammonoidea) aptiens et albiens du bassin vocontien (Sud-Est de la France): Carnets de Géologie/Notebooks on Geology, Mémoire 2008/04 (CG2008_M04), 1–60.

Kazansky, P.A., 1914, Description d’une collection des céphalopodes des terrains Crétacés du Daghestan: Izvestiya Tomskogo Tekhnicheskogo Instituta, 32, 1–127 (In Russian).

Keupp, H., 1976, Neue Beispiele für den Regenerationsmechanismus bei verletzten und kranken Ammoniten: Paläontologische Zeitschrift, 50, 70–77.

Keupp, H., 1977, Paläopathologische Normen bei Amaltheiden (Ammonoidea) des Fränkischen Lias: Jahrbuch der Coburger Landesstiftung, 263–280.

Khalilov, A.G., 1988, Nautiloids and ammonites, in Alizadeh, A. (Ed.), Melovaya fauna Azerbaidzhana (Cretaceous fauna of Azerbaijan): Azerbaiyan, Elm, 330–389 pp. (In Russian).

70

Kilian, W., 1887, Système Crétacé : Annuaire Géologique Universel, 3, 299–356.

Kilian, W., 1910, Valendis–Stufe; Hauterive–Stufe; Barrême Stufe; Apt–Stufe sowie 4 Ansichtstafeln und 8 Fossiltafeln. In Frech, F. (Ed.), Handbuch der Erdgeschichte, II. Teil: Das Mesozoicum. 3. Band. Kreide. Erste Abteilung: Unterkreide (Palaeocretacicum). Zweite Lieferung: Das bathyale Palaeocretacicum im Südöstlichen Frankreich: Lethea Geognostica, 169–287 p.

Kilian, W., 1913, Erste Abtei lung: Unterkreide (Palaeocretacicum). Lieferung 2: Das bathyale Palaeocretacicum im stidostlichen Frankreich; Apt-Stufe; Urgonfacies im stidost1ichen Frankreich, In Frech, F. (Ed.), Das Mesozoicum, Band 3 (Kreide) (1907–1913): Schweizerbart, Stuttgart, Lethaea Geognostica, 11, 289–398 pp.

Kilian, W., Reboul, P., 1915, Contribution à l'étude des faunes paléocrétacés du Sud-Est de la France. I. La faune de l'Aptien inferieur des environs de Montélimar (Drôme). II. Sur quelques ammonites de l'Hauterivien de la Bégude (Basses Alpes): Mémoires pour servir à l'explication de la carte géologique détaillée de la France, 288 pp.

Klein, J., Bogdanova, T., 2013, Fossilium Catalogus I: Animalia. Lower Cretaceous Ammonites VI In Douvilleiceratoidea and Deshayesitoidea: Weikersheim, Backhuys Publishers, Margraf Publishers, 299 pp.

Korn, D., Ebbinghausen, V., Bockwinkel, J., Klug, C., 2003, The A-mode sutural ontogeny in prolecanitid ammonites: Palaeontology, 46, 1123–1132.

Kullmann, J., Wiedmann, J., 1970, Significance of sutures in phylogeny of Ammonoidea: Paleontological Contributions of the University of Kansas, 47, 1–32.

Kullmann, J., Wiedmann, J., 1982, Bedeutung der Rekapitulationsentwicklung in der Paläontologie: Verhandlungen des naturwissenschaftlichen Vereins in Hamburg (NF), 25, 71–92.

Kvantaliani, I.V., 1971, The Aptian ammonites of Abkhazia: Georgian Polytechnical Institute, Tbilisi. 175 pp. (In Russian).

Latil, J.-L., 2011, Early Albian ammonites from Central Tunisia and

adjacent areas of Algeria: Revue de Paléobiologie, 30, 321–429. Leenhardt, F., 1883, Étude géologique de la région du Mont-Ventoux:

France, Université de Montpellier, Ph.D thesis, 273 pp.

Lillo Beviá, J., 1975, Sobre algunos Hoplítidos del Cretácico inferior del sur de Alicante: Boletín de la Real Sociedad Española de Historia Natural (Geología), 73, 81–101.

Luber, T.L., Bulot, L.G., Redfern, J., Frau, C., Arantegui, A., Masrour, M., 2017. A revised ammonoid biostratigraphy for the Aptian of NW Africa: Essaouira-Agadir Basin, Morocco. Cretaceous Research, 79, 12–34.

Luppov, N.P., 1949, Atlas of index forms of the fossil faunas of the USSR: Gostgeolizdat Moskva and Leningrad, 328 pp. (In Russian).

Luppov, N.P., Drushchits, V.V., 1958, Mollusca-Cephalopoda II. Ammonoidea (ceratites and ammonites) and Endocochlia, in Orlov, Y.A. (Ed.), Fundamentals of Paleontology, vol. 6: Moskva, Gosudarstvennoe Nauchno-tekhnicheskoe lzdatel'stvo Literatury po Geologii i Okhrane Nedr, 360 pp.

Mallada, L., 1882, Sinopsis paleontológica de España. Cretaceo: Boletín de la Comisión de la Mapa Geológico de España, 9, 1–88.

Martínez, R., 1977, Macrofauna de la Fm. Margas de Lluça (Apt.-Alb.) entre los Rios Flamisell y Noguera Pallaresa (Prov. Lerida): Universidad Autónoma de Barcelona, Publicaciones de Geología (for 1976), 5, 1–82.

Martínez, R., 1979, Cefalópodos de la Formación «Margas de Lluça» (Apt.-Alb.) al norte de Pobla de Segur (Prov. de Lérida): Cuadernos de Geología Ibérica, 5, 339–351.

Martínez, R., 1982, Ammonoideos Cretácicos del Prepirineo de la Provincia de Lleida: Universidad Autónoma de Barcelona, Publicaciones de Geología, 17, 1–197.

Matamales-Andreu, R., Moreno-Bedmar, J.A., 2016, Revisión de los ammonoideos y nautiloideos del Aptiense del macizo del Garraf (Barcelona) de la colección del Servei del Mapa Geològic de Catalunya (1915-1924): Treballs del Museu de Geologia de Barcelona, 22, 101–124.

Mikhailova, I.A., 1983, Systematics and phylogeny of Cretaceous

Ammonoidea: Moscow, Akademia Nauk CCCP, 280 pp. (In Russian).

Moreno-Bedmar, J.A., 2007, Bioestratigrafía del Aptiense del macizo

del Garraf (NE de la Península Ibérica): Geogaceta, 41, 131–134.

Moreno-Bedmar, J.A., Bulot, L.-G., Company, M., Sandoval, J., Tavera, J.M., 2008, Estudio bioestratigráfico de los ammonites del Aptiense medio de la sección de Aigües (Prebético alicantino, SE de España). Datos preliminares, in Ruiz-Omeñaca, J.I., Piñuela L., García- Ramos, J.C. (Eds.), Libro de resúmenes: Colunga, XXIV Jornadas de la Sociedad Española de Paleontología. Museo del Jurásico de Asturias (MUJA) Colunga, 15-18 de octubre de 2008, 156–157.

Moreno-Bedmar, J.A., Company, M., Bover-Arnal, T., Salas, R., Delanoy, G., Martínez, R., Grauges, A., 2009, Biostratigraphic characterization by means of ammonoids of the lower Aptian Oceanic Anoxic Event (OAE l a) in the eastern Iberian Chain (Maestrat Basin, eastern Spain): Cretaceous Research, 30, 864–872.

Moreno-Bedmar, J.A., Company, M., Sandoval, J., Tavera, J.-M., Bover- Arnal, T., Salas, R., Delanoy, G., Maurrasse, F.J.–M.R., Martínez, R., 2012, Lower Aptian ammonite and carbon isotope stratigraphy in the eastern Prebetic Domain (Betic Cordillera, southeastern Spain): Geologica Acta, 10, 333–350.

Moullade, M., 1965, Révision des stratotypes de l’Aptien: Gargas (Vaucluse). Colloque sur le Crétacé inférieur (Lyon, septembre 1963): Mémoire Bureau Recherches Géologiques et Minières, 34, 201–214.

Moullade, M., Tronchetti, G., Balme, C., Kouyoumontzakis, G., 2006, The Gargasian (Middle Aptian) of La Tuilière - St-Saturnin-lès- Apt (area of the Aptian historical stratotype, Vaucluse, SE France): geographic setting and outcrop correlation: Carnets de Géologie, Article 2006/01, 7 pp.

Orbigny, d’A., 1841, Paléontologie Française. Tome premier. Terrains crétacés. Céphalopodes: Masson, Paris, Librairie Victor, 662 pp.

Ovando-Figueroa, J.R., Moreno-Bedmar, J.A., Chávez-Cabello, G., Minor, K.P., 2015, Lower Aptian ammonites of the Sierra de Parras, Coahuila State, northern Mexico: Carnets de Géologie, 15, 1–11.

Parona, C.F., Bonarelli, G., 1897, Fossili Albiani d'Escragnolles, del Nizzardo e della Liguria Occidentale: Palaeontographia Italica (1896), 2, 53–112.

Peybernès, B., 1976, Le Jurassique et le Crétacé inferieur des Pyrénées Franco-Espagnoles entre la Garonne et la Méditerranée: Toulouse, Université Paul Sabatier, Ph.D. thesis, 458 pp.

Reboulet S., Szives O., Aguirre-Urreta M. B., Barragán R., Company M., Frau C., Kakabadze M.V., Klein J., Moreno-Bedmar J.A., Lukeneder, A., Pictet, A., Ploch, I., Raisossadat S.N., Vašíček, Z., Baraboshkin, E.J., Vasily M., 2018, Report on the 6th International Meeting of the IUGS Lower Cretaceous Ammonite Working Group, the Kilian Group (Vienna, Austria, 20th August 2017): Cretaceous Research, 81, 100–110.

Renngarten, V.P., 1951, Paleontological substantiation of stratigraphy of the Lower Cretaceous of the Greater Caucasus, in Voprosy litologii i stratigrafii SSSR. Pamyati akademika A.D. Arkhangel’skogo (Problems of the Lithology and Stratigraphy of the USSR, devoted to the Memory of Academician A.D. Arkhangelsky): Moscow, Izdatel’stvo Akademiinauk SSSR, 35–66 (In Russian).

Renz, O., 1982, The Cretaceous ammonites of Venezuela: Switzerland, Birkhauser, 132 pp.

Riedel, L., 1938, Amonitas del Cretacico inferior de la Cordillera Oriental: Estudios Geológicos y Paleontológicos sobre la Cordillera Oriental de Colombia, parte 2, 7–78.

Roch, E., 1927, Sur quelques Ammonites du Revest, près de Toulon: Bulletin de la Société géologique de France, série 4 (1926), 287–296. Ropolo, P., Conte, G., Moullade, M., Tronchetti, G., Gonnet, R.G., 2008, The Douvilleiceratidae (Ammonoidea) of the Lower Aptian historical stratotype region at Cassis-La Bédoule (SE France):

Annales du Muséum d’Histoire Naturelle de Nice, 24, 115–181.

Salas, R., Moreno, J.A., 2008, Revisió de la geologia i altres treballs complementaris de quatre fulls del MGC25Ma l'àrea del Massís de Garraf. Part I: Estratigrafia dels materials aptians: Institut Geològic de Catalunya, 1–41.


Sarasin, C., 1897, Quelques considérations sur les genres Hoplites, Sonneratia, Desmoceras et Puzosia: Bulletin de la Société Géologique de France, Série 3, 25, 760–799.

Schindewolf, O.H., 1966, Studien zur Stammesgeschichte der Ammoniten. Lieferung VI. Abhandlungen der Mathematisch- Naturwissenschaftlichen Klasse, Akademie der Wissenschaften und der Literatur in Mainz, 8, 643–730.

Scott, G., 1940, Cephalopods from the Cretaceous Trinity Group of the south-central United States: The University of Texas Publications, 3945, 969–1106.

Sharikadze, M.Z., 1979, A new genus, Procolombiceras of the family Parahoplitidae from the Lower Cretaceous deposits of Georgia: Soobscheniya Akademii nauk Gruzinskoy SSR, 94, 381–384 (In Russian).

Sharikadze, M.Z., 2015, Aptian ammonites of the Caucasus: Georgia, Tbilisi, Publishing house Universal, 321 pp.

Sharikadze, M.Z., Kakabadze, M.V., Hoedemaeker, P.J., 2004, Aptian and Early Albian Douvilleiceratidae, Acanthohoplitidae and Parahoplitidae of Colombia; Scripta Geologica, 128, 313–514.

Shimizu, S., 1931, The marine Lower Cretaceous deposits of Japan, with special reference to the ammonites-bearing zones: The Science Reports of the Tohoku Imperial University, Sendai, Japan, Second series (Geology), 15, 1–40.

Sinzow, I.F., 1908,. Untersuchung einiger Ammonitiden aus dem Unteren Gault Mangyschlaks und des Kaukasus: Zapiski Imperatorskogo Saint-Peterburgskogo Mineralogicheskogo Obshchestva (1907), 45, 455–519.

Spath, L.F., 1922, On Cretaceous Ammonoidea from Angola, collected by Professor J.W. Gregory, D. Se., F.R.S.: Transactions of the Royal Society of Edinburgh 53, part 1, 91–160.

Spath, L.F., 1923, On the Ammonite horizons of the Gault and contiguous deposits in Great Britain Geological Survey summary of progress for 1922: Memoirs of the Geological Survey of Great Britain, 139–149.

Spath, L.F., 1930, On some Ammonoidea from the Lower Greensand: The Annals and Magazine of Natural History, 5, 417–464.

Spath, L.F., 1931, A monograph of the Ammonoidea of the Gault. Part VIII: Palaeontographical Society (1929), 83, 313–378.


Stoyanow, A., 1949, Lower Cretaceous stratigraphy in southeastern Arizona: Memoir Geological Society of America, 38, 169 pp.

Thomel, G., 1980, Ammonites: France, Serre, 227 pp.

Tovbina, S.Z., 1979, On the systematics and phylogeny of the family Parahoplitidae, in Mesezkhnikov, M.S., Kirichkova, A.I. (Eds.), Stratigraphy of the Lower Cretaceous of the oil- and gas-bearing deposits of the USSR: Leningrad, Trudy VNIGRI, 109–122 (In Russian).

Tovbina, S.Z., 1982, New representatives of the family Parahoplitidae of the Turkmenia: Annual of the All-Union Paleontological Society, 25, 60–79 (In Russian).

Waitzman, S.,. 1960, Contribution à l'étude des Ammonites du Crétacé inferieur d' Espagne: Diplôme d'études supérieur des sciences naturelles de l'Université de Paris, 109 pp.

Westermann, G.E.G., 2000, Biochore classification and nomenclature in paleobiogeography: an attempt at order: Palaeogeography, Palaeoclimatology, Palaeoecology, 158, 1–13.

Wiedmann, J., 1966, Stammcsgeschichte und System der posttriadischen Ammonoideen, ein Überblick (2. Teil): Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 127, 13–81.

Wiedmann, J., Dieni, I., 1968, Die Kreide Sardiniens und ihre Cephalopoden:

Palaeontographia Italica, 64, 1–171.

Wright, C.W., Callomon, J. H., Howarth, M.K., 1996, Treatise on Invertebrate Paleontology. Part L, Mollusca 4 (revised), Volume 4: Cretaceous Ammonoidea: Boulder and Lawrence, The Geological Society of America and the University of Kansas, 362 pp.

Young, K., 1974, Lower Albian and Aptian (Cretaceous) ammonites of Texas: Geoscience and Man, 8, 175–228.


Manuscript received: April 18, 2020.

Corrected manuscript received: June 10, 2020.

Manuscript accepted: June 10, 2020.

72

Appendix 1. Revised synonymy list of C. crassicostatum (d'Orbigny, 1841)


1841 Ammonites crassicostatus d'Orbigny, p. 197, pl. 59, fig. 1-3, 4–4'.

1841 Ammonites Gargasensis d'Orbigny, p. 199, pl. 59, fig. 5, 6, 7.

1852 Ammonites crassicostatus d'Orbigny - Bronn, p. 322, pl. 32, fig.

12a–c (= d'Orbigny, 1 841, pl. 59, fig. 1–3).

1882 Ammonites crassicostatus d'Orbigny - Mallada, p. 21, pl. 8, fig. 3–4

(= d'Orbigny, 1841, pl. 59, fig. 1–2).

1882 Ammonites gargasensis d'Orbigny - Mallada, p. 19, pl. 8, fig. 9, 10

(= d'Orbigny, 1 841, pl. 59, fig. 5, 6); ?pl. 10, fig. 12, 13, 14.

1897 Hoplites gargasensis (d'Orbigny) - Sarasin, p. 768, text-fig. 5.

1913 Acanthohoplites crassicostatus (d'Orbigny) - Kilian, p. 346, pl. 11,

fig. 6a-b, text-fig. 6 (= d'Orbigny, 1841, pl. 59, fig. 1–3).

1913 Acanthohoplites gargasensis (d'Orbigny) - Kilian, p. 346, pl. 11, fig. 7a–b (= d'Orbigny, 1841, pl. 59, fig. 5, 6); pl. 11, text-fig. 7 left hand

(= Sarasin, 1897, text-fig. 5).

1915 Acanthohoplites crassicostatus (d'Orbigny) - Kilian and Reboul, p.

46, text-fig. 7 (= d'Orbigny, 1841, pl. 59, fig. 3).

1915 Acanthoplites gargasensis (d'Orbigny) - Kilian and Reboul, p. 44,

text-fig. 6 (= Sarasin, 1897, text-fig. 5).

1927 Acanthoplites gargasiensis var. aptiensis - Roch, p. 292, pl. 18, fig.

5–5a, text-fig. 4.

1927 Acanthoplites gargasensis var. recticostata Roch, p. 288, pl. 18,

fig. 6–6a, 7–7a.

1957 Colombiceras crassicostatum (d'Orbigny) - Arkell et al., p. L387,

fig. 501: 1a–b (= d'Orbigny, 1841, pl. 59, fig. 1–2).

1957 Gargasiceras gargasense (d'Orbigny) - Arkell et al., p. L387, fig.

501: 6a–b (= d'Orbigny, 1841, pl. 59, fig. 5–6).

? 1958 Gargasiceras gargasense var. aptiensis (Roch) - Luppov and

Drushchits, p. 103, pl. 47, fig. 6A–B.

non 1960 Acanthohoplites gargasiensis (d'Orbigny) - Waitzman, p. 61, pl.

3, fig. 3a–b; pl. 5, fig. 4a–b (=? Deshayesitidae indet.).

non 1961 Colombiceras crassicostatum (d'Orbigny) - Eristavi, p. 66, pl.

4, fig. 5 (= Colombiceras tobleri juv.).

1965 Colombiceras crassicostatum (d'Orbigny) - Casey, text-fig. 153a–b, 153c–d, 153e (= d'Orbigny, 1841, pl. 59, fig. 1–3, 4–4').

1966 Colombiceras cf. crassicostatum (d'Orbigny) - Wiedmann, pl. 6,

fig. 2a–b.

1966 Gargasiceras gargasense (d'Orbigny) - Wiedmann, text-fig. 29.

? 1966 Colombiceras cf. crassicostatum (d'Orbigny) - Schindewolf, text-

fig. 427a, 427b, 427c, 427d.

non 1967 Colombiceras crassicostatum (d'Orbigny) - Dimitrova, p. 192,

pl. 89, fig. 3 (= ?Colombiceras sp. gr. tobleri).

non 1967 Gargasiceras aptiense (Roch) - Dimitrova, p. 189, pl. 90, fig.

10 (= "Acanthohoplites" lautum).

non 1969 Gargasiceras ex gr. gargasense (d'Orbigny) - Egoian, p. 164, pl.

12, fig. 10a–в; pl. 23, fig. 35 (= Diadochoceras sp. juv.).

1970 Gargasiceras gargasense (d'Orbigny) - Kullmann and Wiedmann,

text-fig. 10 (= Wiedmann, 1966, text-fig. 29).

1971 Colombiceras crassicostatum (d'Orbigny) - Kvantaliani, p. 61, text-

fig. 33–1, 33–2, 33–3 (= d'Orbigny, 1841, pl. 59, fig. 1–3).

?1975 Gargasiceras gargasensis (d'Orbigny) - Lillo Beviá, p. 87, pl. 2,

fig. 10–11; pl. 4, fig. 3.

non 1976 Gargasiceras gargasensis (d'Orbigny) - Peybernès, pl. 25, fig.

10 (= Dufrenoyia sp. juv.).

? 1977 Gargasiceras gargasensis (d'Orbigny) - Martínez, p. 25, pl. 3, fig. 7, 8, 9; pl. 4, fig. 1, 2, fig. 3 (= Lillo Bevia, 1975, pl. 4, fig. 3), 4,

5, 6, 7, 8, 9.

? 1979 Gargasiceras gargasensis (d'Orbigny) - Martínez, p. 344, pl. 1, fig.

3a–c (= Martínez, 1977, pl. 4, fig. 7, 8, 9).

? 1982 Gargasiceras gargasensis (d'Orbigny) - Martínez, p. 155, pl. 26,

fig. 5a–c (= Martínez, 1977, pl. 3, fig. 7), text-fig. 25.

1982 Gargasiceras gargasense (d'Orbigny) - Kullmann and Wiedmann,

text-fig. 71 (= Wiedmann, 1966, text-fig. 29).

non 1982 Gargasiceras aptiense (Roch) - Renz, p. 28, pl. 2, fig. 6a–b, text-fig. 16d (= Acanthohoplitidae indet. juv.).

? 1982 Gargasiceras cf. recticostatum (Roch) - Renz, p. 27, pl. 2, fig.

11a–b, 12a–b, 13a–b, text-fig. 16c.

? 1983 Colombiceras ex. gr. crassicostatum (d'Orbigny) - Mikhailova,

fig. 66a–л.

non 1988 Gargasiceras cf. aptiense (Roch) - Khalilov, p. 354, pl. 11, fig.

5a–б (Colombiceras sp. juv.).

1989 Colombiceras crassicostatum (d'Orbigny) - Conte, p. 49, fig. 9 on

page 50.

1996 Colombiceras (Colombiceras) crassicostatum (d'Orbigny) - Wright

et al., p. 274, fig. 214.3a-b (= d'Orbigny, 1841, pl. 59, fig. 1–2).

1996 Gargasiceras (Gargasiceras) gargasense (d'Orbigny) - Wright et al.,

p. 275, fig. 214.2a–b (= d'Orbigny, 1841, pl. 59, fig. 5–6).

? 2004 Colombiceras aff. crassicostatum (d'Orbigny) - Sharikadze et al.,

p. 388, pl. 56, fig. 2a–c.

? 2004 Gargasiceras attenuatum (Roch) - Sharikadze et al., p. 376, pl.

71, fig. 3a–c, 4a–b.

non 2004 Gargasiceras aptiense (Roch) - Sharikadze et al., p. 377, pl. 72,

fig. l a–в (= "Gargasiceras" pulcher Riedel).

? 2004 Gargasiceras recticostatum (Roch) - Sharikadze et al., p. 378, pl.

72, fig. 2a–b.

? 2004 Gargasiceras aff. recticostatum (Roch) - Sharikadze et al., p. 381,

pl. 72, fig. 3a–c, 4a–c, 5a–c.

2005 Colombiceras crassicostatum (d'Orbigny) - Dutour, p. 206, pl. 18,

fig. 9a–9d, 10a–c.

2005 Gargasiceras gargasense (d'Orbigny) - Dutour, p. 209, pl. 18, fig.

12a–d.

2006 Colombiceras crassicostatum - Delanoy in Gauthier et al., p. 74, pl.

32, fig. 6a–c (= lectotype).

2006 Gargasiceras gargasense (d'Orbigny) - Delanoy in Gauthier et al.,

p. 74, pl. 32, fig. 7a–c.

? 2007 Colombiceras ex. gr. crassicostatum - Bogdanova and Mikhailova,

text-fig. A.

2007 Colombiceras crassicostatus (d'Orbigny) - Moreno-Bedmar, p. 29, pl. 2, fig. 4, text-fig. 34 (= d'Orbigny, 1841, pl. 59, fig. 1–3, 4–4'), text-fig. 35 (= Dutour, pl. 18, fig. 9a, d).

2007 Colombiceras crassicostatus (d'Orbigny) - Garcia et al., pl. 2, fig. 7. 2008 Colombiceras crassicostatum (d'Orbigny) - Salas and Moreno- Bedmar, pl. 7, fig. C (= Garcia et al., 2007, pl. 2, fig. 7); pl. 9, fig. A.

2009 Colombiceras crassicostatum (d'Orbigny) - Moreno-Bedmar et al.,

pl. 1, fig. A (= Salas and Moreno-Bedmar, 2008, pl. 9, fig. A). 2008 Gargasiceras aptiense (Roch) – Joly and Delamette, Fig. 6D. 2012 Colombiceras crassicostatum - Moreno-Bedmar et al., appendix.

fig. 8G (= Garcia et al., 2007, pl. 2, fig. 7).

? 2016 Colombiceras crassicostatum – Matamales-Andreu and Moreno-

Bedmar, p. 112, fig. 8. A1–2.

Enlaces refback

  • No hay ningún enlace refback.


Paleontología Mexicana, Vol. 13, núm. 1, 15 de enero de 2024, es una publicación semestral  (enero y julio) editada por la Unidad Editorial del Instituto de Geología de la Universidad Nacional Autónoma de México, Ciudad Universitaria, Delegación Coyoacán, C.P. 04510, México, CDMX. El editor en jefe es el Dr. Josep Anton Moreno Bedmar, CE josepamb@geologia.unam.mx y la editora técnica es la Mtra. Sandra Ramos, sandraram@geologia.unam.mx. Reserva de derechos al uso exclusivo No. 04-2022-072810185500-102, ISSN (revista impresa): 0185-478X, e-ISSN (versión electrónica): 2007-5189, ISSN-L: 0543-7652. http://www.ojs-igl.unam.mx/index.php/Paleontologia/index. https://twitter.com/paleontologiam Fecha de la última modificación, 15 de junio de 2023.

 

Las ideas aquí expresadas por los autores no necesariamente reflejan la postura del editor de la publicación Paleontología Mexicana. Se autoriza la reproducción total o parcial de los textos aquí publicados siempre y cuando se cite la fuente completa o la dirección electrónica de la publicación.